
Block Compressed Sensing Based Background Subtraction
for Embedded Smart Camera

LUO Rujun, WANG Yiyin , CHEN Cailian, YANG Bo, GUAN Xinping

Department of Automation, Shanghai Jiao Tong University,
and Key Laboratory of System Control and Information Processing,

Ministry of Education of China, Shanghai 200240
E-mail: {junjun, yiyinwang, cailianchen, bo.yang, xpguan}@sjtu.edu.cn

Abstract: Embedded smart camera networks represent an emerging direction of next generation surveillance systems. A big
challenge to implement computer vision applications on embedded cameras is the limit of memory and computational capacity.
Since background subtraction algorithms play a fundamental yet significant role of most computer vision applications, their
memory requirements and computational efficiency should be taken into account in the design. In this paper, we propose an
efficient hierarchical light-weight background subtraction approach by combining the pixel-level and the block-level background
subtraction modules into a single framework so that it is capable of dealing with dynamic background scenes. Block compressed
sensing theory is for the block-level module design to save memory and improve computational efficiency. Moreover, considering
the continuity of foreground objects, a novel integral filter is designed for the pixel-level module to eliminate perturbations
efficiently. Experimental results on various videos demonstrate superior performance of the proposed algorithm. The proposed
light-weight algorithm only requires about 6.5 bytes per pixel, and is applicable for embedded smart cameras. Furthermore, as
each block is processed independently, it can be implemented in parallel.

Key Words: Background subtraction, Hierarchical, Block compressed sensing, Light-weight, Real-time

1 Introduction

In recent years, embedded smart camera networks pro-

vide a promising way for intelligent surveillance systems.

In most computer vision applications, foreground detection

plays a basic yet significant role. However, many existing

foreground detection algorithms [1] are too “heavy” (large

memory requirements or low computational efficiency) to

apply in the embedded platforms. Moreover, among these

algorithms, the background subtraction method is the most-

ly used for its simplicity and efficiency. Therefore, a robust

light-weight background subtraction algorithm is critical for

embedded computer vision applications.

The basic idea of background subtraction is to automati-

cally detect foreground objects by comparing current frame

with a background model. However, this procedure rarely

works in real world applications because the background

model is always contaminated by perturbations in natural

scenes, such as shadows, illumination changes, rippling wa-

ter, swaying leaves and camera noises. Thus, in order to

obtain a robust background model, a number of sophisticat-

ed methods based on complex statistical models have been

proposed. For instance, the methods based on the Gaus-

sian Mixture Model (GMM) [2][3] model every pixel with

three to five Gaussian distributions, which is capable to deal

with subtle illumination changes. Codewords-based meth-

ods [4][5] form codewords for each pixel to capture differ-

ent values within a fixed period, which averagely require 6.5

codewords per pixel. Nevertheless, these sophisticated mod-

eling techniques suffer from memory crises and they are not

applicable for embedded smart cameras.

Recently, a few embedded platforms oriented background

This work was partially supported by Ministry of Science and Technol-

ogy of China under National Basic Research Project 2010CB731803, by the

NSF of China under the grants 61221003, 61290322, 61174127, 61273181,

61301223, and by Science and Technology Commission of Shanghai Mu-

nicipal, China under the grants 13ZR1421800 and 13QA1401900.

subtraction methods have been proposed [6-9]. Casares et

al. [6][7] use four counters to record changes of each pixel

in a fixed period and apply the statistical result to update

the background model. This algorithm is fast and light-

weight. Manzanera et al. [8] propose an efficient back-

ground subtraction algorithm based upon a sigma-delta fil-

ter. The sigma-delta detection filter approximates the back-

ground model as a simple nonlinear recursive module. This

kind of approximation has taken advantage of the character-

istics of embedded platforms without a floating point unit.

Another popular real-time background subtraction method

is the visual background extractor (ViBE) proposed by Bar-

nich et al. [9]. ViBE is well-known for its random update

strategy and low computational load. However, ViBE need-

s to store more than 20 background reference images (also

called background samples), which is memory-consuming.

Furthermore, most of the above methods are in the pixel lev-

el, and pixel-level methods are not robust enough against dy-

namic background scenarios.

In this paper, we propose a hierarchical light-weight sub-

tractor based on block compressed sensing theories (BCS).

Our contributions are three-fold: (a) Considering that pixel-

level methods are sensitive to unavoidable perturbations in

natural scenes, we combine block-level and pixel-level mod-

ules into a single system. (b) To break the “bottleneck” of

the limited memory, we employ the block compressed sens-

ing into the embedded system in the block level. We clas-

sify blocks in the compressive sensing (CS) domain instead

of the original domain. This allows us to store data with less

memory. In the block level,we use a modified random update

strategy with only one-sixth of memory of ViBE. (c) Further

utilizing the spatial information of each block, we design a

light-weight filter, called the integral filter, to extract fore-

ground pixels from foreground blocks. The experimental re-

sults on real data demonstrate superior performance of the

proposed method.

Proceedings of the 33rd Chinese Control Conference
July 28-30, 2014, Nanjing, China

4848

The remainder of this paper is organized as follows. Sec-

tion 2 introduces mathematic theories of CS. The main idea

of the proposed algorithm is described in Section 3. Sec-

tion 4 represents the experimental studies for evaluating the

performance of the proposed Block Compressed Sensing

based Background Subtraction (BCSBS) method and other

five background subtraction methods including GMM1 [2],

GMM2 [3], CodeBook [4], LW [6] and ViBE [9]. Conclu-

sion is given in Section 5.

2 Preliminaries

Before illustrating the proposed algorithm, we present

some preliminaries on CS [10][11]. CS is developed recent-

ly in signal processing, and has gained increasing popularity

in computer vision applications.

2.1 Random Projection
Generally speaking, the image in the discrete cosine trans-

form (DCT) or the wavelet basis domain is compressible,

which implies that we can use less memory to store data.

Here we introduce CS into the proposed background sub-

traction algorithm and detect foreground objects in the com-

pressive sensing domain.

A random measurement matrix R ∈ Rm×n projects data

from high-dimension image representation x ∈ Rn to a low-

dimension vector y ∈ Rm by

y=Rx (1)

where m � n and R satisfies the Restricted Isometry Prop-

erty (RIP).

Given a sparse signal such as a natural image, it has been

demonstrated that a small number of randomly generated lin-

ear measurements can still preserve most of the salient in-

formation of the original signal [11]. Compressive sensing

theories also guarantee the reconstruction of the original sig-

nal with a small error. Supported by the solid mathematic

theories of CS, we can analyze image data in the CS do-

main instead of the high dimensional space, which reduces

computation and saves memory. The setting of the random

matrix R is stated as follows and the selection of m will be

discussed in Section 4.1.

2.2 Random Measurement Matrix
Random measurement matrix plays an important role in

compressive sensing and should be modeled properly. A

typical measurement matrix satisfying the RIP is the random

Gaussian matrix R ∈ Rm×n where ri,j ∼ N(0, 1). Howev-

er, the random Gaussian matrix is not suitable for embedded

platforms without a float point operation unit. In this paper,

we adopt a circulant matrix [11][12] as the measurement ma-

trix:

R =

⎡
⎢⎢⎢⎣

an an−1 · · · a1
a1 an · · · a2
...

...
. . .

...

am−1 am−2 · · · am

⎤
⎥⎥⎥⎦ (2)

where ai ∈ {−1,+1} obeys the Bernoulli distribution.

It is demonstrated in [13] that a circulant matrix could en-

sure sparse reconstruction by l1-minimazation in the sparsity

up to a log-factor in the ambient dimension. In addition, the

circulant matrix is generated by circularly shifting the ele-

ments of the first row of R, which is proper for the imple-

mentation of embedded platforms.

3 Block Compressed Sensing Based Subtractor

In this section, we present the proposed background sub-

traction algorithm in details. Firstly, we detect foreground

objects in the compressed sensing domain coarsely. Fur-

thermore, we extract foreground objects in the pixel level

through the integral filter to achieve a more accurate output.

The flowchart of the BCSBS algorithm is shown in Fig. 1.

3.1 Previous Processing
In the pre-processing module, we segment every frame in-

to non-overlapping blocks with size of 8×8 pixels (Note that

8 × 8 is the default block size in JPEG.). Then we compute

projections based on CS for each block. So far, we have

mapped a 64 × 1 (8 × 8 = 64) vector of each block into

a m × 1 projected vector. Note that m should follow RIP,

meanwhile small enough for memory saving and computa-

tional efficiency. Actually, results in Section 4 show that

the proposed method performs well when m = 8 per block.

The measurement matrix we have mentioned at Section 2.2

is generated as a global parameter and used for all blocks.

For more details, we formulate this procedure at frame t as

Bt = {bt,i|i = 1, 2, ..., Nb}
Yt = {yt,i|i = 1, 2, ..., Nb}

(3)

where Yt = RBt, Nb is the total number of blocks per

frame. Bt is the block representation at frame t and bt,i
is the vector representation of the ith block of the tth frame.

yt,i is the projected vector of bt,i and Yt is the projected

image representation of the block image Bt.

Before carrying out all the modules of the proposed back-

ground subtraction method, we need to initialize the back-

ground model firstly. Details of how to obtain the ini-

tial background model are described in Algorithm 1. In

the block level, the background model B̄t is sample-based,

which is formed by a number of background samples. The

background samples generated from a single frame consti-

tute the initial background model in this level, which is sim-

ilar to the initialization process of ViBE. Actually, since we

Algorithm 1 Initialization of the background model

1: Let t = 0 index the first frame and I0 denote the first frame

2: Make Ȳ0 and M0 empty and be the Initialization of Ȳt and Mt

3: Let N(p) denote a spatial neighborhood of a pixel p
4: Let Īk

0 denote the kth background sample at the first frame

5: on k = 1 : Ns do
6: on every pixel p ∈ I0, p is located at (i, j) do
7: Location (i1, j1) ∈ N(p) is chosen randomly by a uni-

form law

8: Set Īk
0 (i, j) = I0(i1, j1)

9: end on
10: M0 = M0 + Īk

0

11: Set B̄k
0 as the block representation of Īk

0

12: Set Ȳ k
0 as the projected representation of B̄k

0

13: end on
14: Then Ȳ 0 = {Ȳ k

0 |k = 1, ..., Ns}
15: Set M0 = M0

Ns

4849

Fig. 1: Flow chart of the proposed BCSBS algorithm.

detect foreground blocks in CS domain, the actual back-

ground model in the block level should be the projected rep-

resentation Ȳt of B̄t. Moreover, the average of the initial

background samples in the block level is taken as the initial

background model Mt for the pixel-level subtractor. Here,

Ȳt and B̄t are defined as follows, respectively.

B̄t = {B̄k
t |k = 1, .., Ns}, B̄k

t = {b̄kt,i|i = 1, ..., Nb}
Ȳt = {Ȳ k

t |k = 1, .., Ns}, Ȳ k
t = {ȳk

t,i|i = 1, ..., Nb}
(4)

where Ns is the total number of background samples. B̄t

is the block representation of the background sample set at

frame t, and B̄k
t is the kth sample of B̄t. Ȳt and Ȳ k

t are

respectively the projected representation of B̄t and B̄k
t .

3.2 Block-level Subtractor
In the block level, the background subtraction is carried

out coarsely with the random update strategy similar to ViBE

[9]. We detect foreground objects in the CS domain instead

of the original image domain and in the block level instead

of the pixel level.

For a new incoming frame It at frame t, we firstly ap-

ply the pre-processing module to it and obtain the projected

representation Yt = {yt,i|i = 1, 2, ..., Nb}. The ith block

is classified as the background block if at least Nmin cor-

responding projections {ȳk
t,i} of the projected background

sample set Ȳt are similar to yt,i. Here, Nmin denotes the

minimum number and the similarity is defined by the cosine

similarity with a certain threshold. The block-level subtrac-

tor formulas as

Siml(yt,i, ȳ
k
t,i) =

yt,i
T ȳk

t,i

‖yt,i‖
∥∥ȳk

t,i

∥∥ , k = 1, 2, ..., Ns (5)

ft(i) =

{
0 #{Siml(yt,i, ȳ

k
t,i) > DTH} > Nmin

1 others
(6)

where ft ∈ RNb is the foreground block mask, and when

ft(i) = 1, it indicates that the ith block of It is the fore-

ground block.

The selection of threshold DTH , sample number Ns

and cardinality Nmin depends on the complexity of testing

videos. Further discussions of how to adjust these parame-

ters are presented in Section 4.1.

The background model update strategy in the block level

is shown in Algorithm 2. Compared to the first-in-first-out

update strategy, this technique is simple and effective. Sam-

ples are discarded randomly according to a uniform prob-

ability density function with property of monotonic decay,

which was demonstrated in ViBE [9].

Algorithm 2 Background update strategy in the block level

if ft(i) = 0 then
2: s = random(1, Ns)

Using yt,i to replace the selected sample ȳs
t,i of Ȳt directly.

4: Using bt,i to update Mt by a learning rate α.

else
6: Go to the pixel-level subtractor in the following section.

end if

3.3 Pixel-level Subtractor
Though results of the block-level subtractor are sufficient

for some applications like intruder detections, many applica-

tions require higher accuracy. In this section, we will extract

more details of foreground objects in the pixel level only for

the foreground blocks.

To suppress more disturbances without introducing signif-

icant computational burden, we design a filter (named as in-

tegral filter) inspired by the FAST corner detection method

[14]. The integral filter, shown in Fig. 2, takes the local

continuity of foreground pixels into consideration, and cal-

culates the local continuity in the way of calculating the in-

tegral image.

Fig. 2: Flow chart of the Integral Filter

4850

We define a local index η to measure the local continuity

of each pixel for each foreground block. For instance, a pixel

p ∈ {foreground blocks} is classified as foreground pixel if

its local index is larger than a threshold θ1. Here, the local

continuity is defined as the total number of the candidate

foreground pixels within a window around pixel p.

Firstly, we generate candidate foreground mask Ft at

frame t by comparing It to the background model Mt. Take

pixel p located at (i,j) for instance, and the candidate fore-

ground mask Ft is formulated by

Ft(i, j) =

{
1 abs(It(i, j)−Mt(i, j)) ≥ δ
0 others

(7)

when Ft(i, j) = 1, it implies that pixel p is a candidate fore-

ground pixel.

Furthermore, the integral continuity value, denoted as H ,

is calculated by (8). Note that we can conveniently obtain

the local continuity ηp for pixel p as the implementation of

computing integral image, which is efficient. If the size of

the filter window is 3× 3, then ηp can be written as (9).

H(i, j) =
∑
k≤i

∑
l≤j

Ft(k, l) (8)

ηp = H(i+ 1, j + 1) +H(i− 1, j − 1)−
H(i+ 1, j − 1)−H(i− 1, j + 1)

(9)

Now we update the candidate foreground mask Ft to

achieve a more precise foreground mask by

Ft(i, j) =

{
1 ηp ≥ θ1
0 others

(10)

After processing the integral filter, more noises are elim-

inated and we can obtain a more specific foreground mask

Ft. With this final foreground mask Ft, we could update the

background model for the pixel-level subtractor by

Mt+1 = (1− α)Mt + α(It − It � Ft) (11)

where α is the learning rate, � symbol is to explicitly denote

element-wise multiplication.

So far, we have described all the major steps of the pro-

posed algorithm. Evaluations of the BCSBS algorithm will

be discussed and compared with other five popular back-

ground subtraction methods in next section.

4 Experiments

In this section, we evaluate the performance of the BCS-

BS algorithm and compare it with other five background

subtraction algorithms, including GMM1 [2], GMM2 [3],

CodeBook [4], LW [6] and ViBE [9]. Although a global-

ly accepted standardized evaluation framework is missing,

receiver operating characteristic (ROC) curve is one of the

most widely used metrics to assess performance for a binary

classifier [15]. Background subtraction method is some kind

of a binary classifier, so we employ ROC curve to evaluate

the performance of different parameter combinations. The

horizontal and vertical axis of ROC curve represent the prob-

ability of false alarm (PFA) and the probability of detection

(PD), respectively. PFA and PD are formulated as

PFA =
FP

FP + TN
,PD =

TP

TP + FN
(12)

where FP is the total number of the false positive pixel, TP
is the total number of the true positive pixel, FN is the to-

tal number of the false negative pixel and TN is the total

number of the true negative pixel.

Another widely used metric is percentage of correct clas-

sification (PCC) [15]. In our experiments, PCC is used to

evaluate the accuracy of these comparative methods on vari-

ous videos. PCC is defined as

PCC =
TP + TN

TP + TN + FP + FN
(13)

Moreover, given that memory is constrained for embedded

smart cameras, we also compared the proposed algorithm

with others in terms of the memory requirement per frame.

Five challenging videos are used to assess the perfor-

mance of different methods. These videos are named as “of-

fice”, “canoe”, “traffic”, “sofa” and “highway” respectively,

provided by www.changedetection.net. All the experiments

are implemented on 2.5GHz Core i5CPU 2GB of DDR3 ei-

ther by VS2010 or by Matlab2010.

4.1 Parameter Settings
From the previous discussions, we can observe that there

are three key parameters deciding the performance of the

proposed algorithm:

• Ns – the total number of background samples ;

• Nmin – the minimum number of similar block samples

for selecting the candidate foreground blocks;

• m – the length of the projected vector.

In order to determine an optimal parameter combination

for the BCSBS algorithm, we analyse the ROC curve with

Nmin chosen from 2 to 80 on NS ranging from 5 to 100.

Meanwhile, others are fixed: m = 8 , block size = 8 × 8,

DTH = 0.8 , θ1 = 5, α = 0.005, δ = 30 for the “office”

video and δ = 50 for the “canoe” video.

0.05 0.1 0.15 0.2
0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm

Pr
ob

ab
ili

ty
 o

f D
et

ec
tio

n

10 Samples
20 Samples
30 Samples
40 Samples

(a) minimum number Nmin

0.1 0.12 0.14 0.16 0.18
0.75

0.8

0.85

0.9

0.95

1

Probability of False Alarm

Pr
ob

ab
ili

ty
 o

f D
et

ec
tio

n

5 minNum
6 minNum
8 minNum
10 minNum

(b) background sample number NS

0 0.05 0.1 0.15 0.2
0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm

Pr
ob

ab
ili

ty
 o

f D
et

ec
tio

n

2 Projections
4 Projections
8 Projections
16 Projections

(c) length of the projected vector m

Fig. 3: ROC curve of numerous parameter combinations. (a)

Nmin ranges from 2 to Ns with step of 2. (b) Ns ranges from

10 to 100 with step of 10. (c) m is respectively set as 2, 4, 8

and 16.

4851

(a) Frame 1498 (b) Ground Truth

(c) Prop. method (d) GMM1 (e) GMM2

(f) CodeBook (g) ViBE (h) LW

Fig. 4: Foreground detection results of different algorithm-

s on the “office” video at frame 1498 where a person has

remained still for more than 150 frames.

Since there are more than 100 combinations between

Nmin and NS , it is not suitable to draw all of them in one

ROC curve figure. Instead, we analyse the impact of dif-

ferent Nmin on the ROC curve with NS = {10, 20, 30, 40}.

From Fig. 3(a), we can learn that if the number of sam-

ples is too small, the maximum probability of detection

is limited, like {NS = 20, PD = 0.935}. And when

NS = 40, Nmin = 6 , the proposed method acquires an

optimal parameter combination where the probability of de-

tection is close to 95% accuracy with 4% false alarm. Note

that for different background sample numbers, the best per-

formance can be achieved with Nmin ranging from 5 to 10.

Meanwhile, it can be observed larger sample number pro-

duce higher detection accuracy. Thus we would go further

to study the effect of sample number NS on the ROC curve.

Once Nmin has been chosen, next, we study the influ-

ence of the sample number NS on the average performance

of several videos. We draw the ROC curve with Nmin =
{5, 6, 8, 10} on NS varying from 10 to 100 with step of 10.

From results shown in Fig. 3(b), it can be seen that the best

performance is achieved when NS = 40, Nmin = 6 or 8.

Also we can know that Nmin = 6 or 8 is suitable for dif-

ferent number of samples, while the PD increases with the

number of background samples. Making the tradeoff be-

tween computational efficiency and model accuracy, we vary

NS between {30, 40, 50} and Nmin between {6, 8, 10} on d-

ifferent videos.

Besides NS and Nmin, the length m of the projected vec-

tor also impacts on the evaluation of the BCSBS method. We

apply the same datasets to draw the ROC curve with projec-

tion number m varying from 2,4,8,16. Results shown in Fig.

3(c) indicate that when m = 8, the CS theory works well

to capture most information of a block. Given this observa-

tion, m is fixed as 8 for evaluating the performance of the

proposed BCSBS algorithm.

(a) Frame 955 (b) Ground Truth

(c) Prop. method (d) GMM1 (e) GMM2

(f) CodeBook (g) ViBE (h) LW

Fig. 5: Foreground detection results of different algorithms

on the “canoe” video at frame 955 with swaying trees and

rippling water.

4.2 Evaluation Comparing with Other Techniques
After setting the parameter of the proposed algorithm, we

evaluate these background subtraction methods on five typ-

ical videos mentioned above. Video of “office” is the base-

line with small illumination changes. “canoe” exhibits dy-

namic background motion, and “traffic” was recorded with

heavy camera jitter. “sofa” video contains background ob-

jects moving away, abandoned objects and objects stopping

for a short while then moving away. “highway” is challenged

by the swaying leaves and illumination changes.

Here, these background subtraction algorithms work on

grayscale images. GMM-based methods [2][3] is tested us-

ing their implementation in the Open Source Computer Vi-

sion Library (OPENCV). ViBE is tested using the C++ im-

plementation available on the author’s paper. We implement

the codebook algorithm [4] and the LW algorithm [6] our-

selves by Matlab2010. The proposed algorithm is imple-

mented by C++ and the parameter has been discussed in Sec-

tion 4.1. Parameters for GMM1 [2], GMM2 [3], CodeBook

[4], LW [6] and ViBE [9] are respectively chosen accord-

ing to the default values of [2][3][4][6][9] and are properly

adjusted in line with the testing videos.

Table 1 shows the PCC scores for different algorithms on

the five datasets, and we can see that the proposed BCSBS

method outperforms than others on average.

Table 1: PCC for different methods on different data
Cases office canoe traffic sofa highway

CB 0.9073 0.8785 0.8633 0.9527 0.9561

ViBE 0.9547 0.9353 0.9090 0.9643 0.9694

GMM1 0.9601 0.9683 0.9275 0.9662 0.9525

GMM2 0.9650 0.9709 0.9507 0.9673 0.9595

LW 0.9108 0.9320 0.8995 0.9442 0.9213

BCSBS 0.9695 0.9843 0.9499 0.9726 0.9697

4852

Moreover, Fig. 4 displays the background subtraction re-

sults of one typical frame in “office” video where a person

has remained still for more than 150 frames. Compared to G-

MM1, CB and LW, the proposed method contains fewer false

alarm pixels. In terms of GMM2 and ViBE, the whole fore-

ground object can be extracted accurately by the proposed

BCSBS method. Especially, although we use the similar up-

date strategy in the block level with ViBE, the proposed algo-

rithm achieves a higher PCC score than ViBE. Fig. 5 shows

outputs of another challenging video “canoe” with swaying

trees and rippling water. Note that the BCSBS method can

eliminate more disturbances as well as acquire a higher PCC

score.

We also compare the memory requirement per frame of

these six methods for a 320 × 240 frame and results are

shown by a bar grough in Fig. 6.

GMM-based algorithms require 23 to 32 bytes per pixel if

one color channel and three Gaussian distributions are used.

If three color channels are used, the memory required per

pixel will be up to 96 bytes. Codewords-based algorithms

require about 91 bytes per pixel for one color channel. And

LW consumes about 7.25 bytes per pixel which is competi-

tive to our method.

The BCSBS method needs about 5 to 8 bytes per pixel ac-

cording to the complexity of different scenarios. In the block

level, we carry out background subtraction by comparing a

new projected vector to NS (NS = 40 on average) back-

ground projection samples to find Nmin matches (Nmin = 6)

at least. It indicates that every block requires 40 × 8 = 320
bytes to store samples and 8 integers for the measuremen-

t matrix R. Since the measurement matrix R is regarded

as a global parameter, the memory requirement of R can be

omitted compared to the total memory requirement of the

proposed algorithm. In another word, the memory require-

ment is about 5 bytes per pixel yet ViBE requires almost 40

bytes per pixel for storing background samples. General-

ly, foreground objects occupy a small percentage of the w-

hole image and here we consider this percent as 50%. Thus,

for the pixel-level subtractor, about 1.5 bytes per pixel is re-

quired (one byte for the foreground mask, one byte for the

background model and one byte for the continuity index). In

summary, the proposed method requires about 6.5 bytes per

pixel.

Fig. 6: Memory requirement per frame of different back-

ground subtraction algorithms using one color channel.

5 Conclusion

In this paper, we propose a light-weight yet robust back-

ground subtraction method based on block compressed sens-

ing. The processing of each block is parallel, thus it en-

ables high-speed parallel implementation. Since we clas-

sify blocks in the compressive sensing domain without re-

construction, the proposed method reduces memory and im-

proves efficiency. Furthermore, the designed integral filter

can deal with considerable perturbations in natural scenes,

meanwhile can improve the accuracy of the methods based

on the block level. In addition, a sudden illumination

changes detection module is embedded into this framework

easily. Numerous experiments on various challenging videos

indicate that the proposed algorithm outperforms other exist-

ing background subtraction algorithms. In our future work,

the proposed BCSBS algorithm can be extended to support

pan-tilt-zoom cameras and smart camera networks.

References
[1] W. Hu, et al., A survey on visual surveillance of object motion

and behaviors, IEEE Trans. on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 34(3): 334–352, 2004.

[2] P. KaewTraKulPong and R. Bowden, An improved adaptive

background mixture model for real-time tracking with shadow

detection, in Proceedings of European Workshop on Advanced
Video-based Surveillance Systems, 2001: 135–144.

[3] Z. Zivkovic, Improved adaptive Gaussian mixture model for

background subtraction, in Proceedings of International Con-
ference on Pattern Recognition (ICPR’04), 2004: 28–31.

[4] K. Kim, et al., Background modeling and subtraction by code-

book construction, in Proceedings of International Conference
on Image Processing (ICIP’04), 2004: 3061–3064.

[5] K. Kim, et al., Real-time foreground-background segmentation

using codebook model, Real-Time Imaging, 11(3): 172–185,

2005.

[6] M. Casares and S. Velipasalar, Light-weight salient foreground

detection with adaptive memory requirement, IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP’09), 2009: 1245–1248.

[7] M. Casares, S. Velipasalar and A. Pinto. Light-weight salient

foreground detection for embedded smart cameras. IEEE Tran-
s. on Computer Vision and Image Understanding, 114(11):

1223–1237, 2010.

[8] A. Manzanera, Σ−Δ background subtraction and the Zipf law,

in Proceedings of Pattern Recognition, Image Analysis and Ap-
plications, 2007: 42–51.

[9] O. Barnich and M. Van Droogenbroeck, ViBe: A universal

background subtraction algorithm for video sequences, IEEE
Trans. on Image Processing, 20(6): 1709–1724, 2011.

[10] D.L. Donoho, Compressed sensing, IEEE Trans. on Informa-
tion Theory, 52(4): 1289–1306, 2006.

[11] L. Gan, Block compressed sensing of natural images, in Pro-
ceedings of Conference on International Conference on Digital
Signal Processing (ICDSC’07), 2007: 403–406,

[12] F. Sebert, Y.M. Zou and L. Ying, Toeplitz block matrices in

compressed sensing and their applications in imaging, Interna-
tional Conference on Information Technology and Applications
in Biomedicine (ITAB’08), 2008: 47–50.

[13] H. Rauhut, Circulant and Toeplitz matrices in compressed

sensing, in Proceedings of Signal Processing with Adaptive S-
parse Structured Representations (SPARS’09), 2009.

[14] E. Rosten and T. Drummond, Machine learning for high-

speed corner detection, in Proceedings of the 9th European
Conference on Computer Vision (ECCV’06), 2006: 430–443.

[15] Y. Benezeth, et al, Review and evaluation of commonly-

implemented background subtraction algorithms, in Proceed-
ings of IEEE International Conference on Pattern Recognition
(ICPR’08), 2008: 1–4.

4853

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

