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ABSTRACT

In this paper, we propose a clock skew calibration method for rang-
ing applications using an ultra-wideband (UWB) signal. The clock
skew is one of the main error sources in time-of-arrival (TOA) based
UWB ranging, since a long ranging signal is required to obtain a
sufficiently high signal-to-noise ratio (SNR). Therefore, the clock
skew calibration is essential for accurate TOA ranging. We propose
to estimate the clock skew in the frequency domain to take full ad-
vantage of the periodic property of the ranging signal, which allows
the proposed method to reach super-resolution. Simulation results
corroborate the efficiency of the proposed method.

1. INTRODUCTION

Ultra-wideband (UWB) impulse radio (IR) is a promising technol-
ogy for high resolution ranging [1, 2]. Using UWB IR, the multipath
channel components can be resolved, and if we can detect the first
arriving multipath component, we can estimate the time-of-arrival
(TOA) with high resolution, which facilitates accurate ranging. In
order to obtain high accuracy TOA estimation, a long ranging sig-
nal composed of many frames is normally employed to enhance the
received signal-to-noise ratio (SNR) [1]. However, due to many er-
ror sources, such as temperature and low-cost crystals, there is a
clock discrepancy between the transmitter and the receiver clock.
We refer to this clock discrepancy as a relative clock skew, which
describes the frequency difference between the two clocks. As a re-
sult, the same ranging signal can be viewed differently due to this
clock skew. Therefore, it is essential to carry out a clock skew cali-
bration in order to achieve accurate TOA estimation [3, 4, 5]. Some
time-domain approaches have been proposed in [4, 5] to solve this
problem. However, they have to perform a complex search through
trellis-based paths.

In this paper, we investigate a frequency-domain approach to
estimate the clock skew. We make use of the periodic property of
the ranging signal, which manifests itself as local peaks following
a well-defined pattern in the frequency domain. The clock skew in-
formation is embedded in the distance between these local peaks.
Instead of estimating the average distance between local maxima,
which is quite challenging due to the multipath channel, we assume
the knowledge of the frequency pattern and try different numbers of
zeros padded to the end of the ranging signal, and search for the most
appropriate zero-padded signal, which can collect the maximum en-
ergy from the known frequency pattern. The most appropriate length
of the zero-padded signal should be an integer multiple of the frame
period. Hence, we can derive the clock skew based on the above
information. We start with the system model in Section 2. The fre-
quency domain analysis follows in Section 3. The frequency domain
method for the clock skew estimation is proposed in Section 4. Sim-
ulation results are shown in Section 5.

2. SYSTEM MODEL

We design a ranging signal composed of several frames. Each frame
is of period Tf and hosts one pulse. The transmitted signal can then
be written as s(t) =

PN−1
i=0 p(t−iTf ), where p(t) is the transmitted

pulse shape, and N is the total number of frames. After propagation
through a multipath channel h(t), the received signal is filtered by a
front-end filter g(t). Consequently, the received signal in the noise-
less case can be modeled as

x(t) = g(t) ∗ h(t) ∗ s(t)

=

L−1X
l=0

N−1X
i=0

αlφ(t − iTf − τl), (1)

where ∗ denotes convolution; h(t) =
PL−1

l=0 αlδ(t−τl) is the multi-
path channel impulse response with αl and τl representing the ampli-
tude and arrival time of the lth path, respectively, and φ(t) = g(t) ∗
p(t). Without loss of generality, we let 0 ≤ τ0 < τ1 < · · · < τL−1,
and thus the time-of-arrival (TOA) of the ranging signal is equal to
τ0. We assume that Tf is long enough, i.e., Tf > τL−1 − τ0 + Tφ,
where Tφ is the length of φ(t), such that there is no inter-frame in-
terference (IFI). Furthermore, we assume that the whole received
ranging signal is subsumed in an observation window, which starts
at t = 0, and is of length To. Hence, To > NTf + τ0. In addition,
this observation window contains no other signals.

If the frame period Tf is perfectly known, then the TOA can be
accurately estimated by adopting super-resolution methods, such as
MUSIC [6]. However, due to many error sources, such as tempera-
ture and low-cost crystals, there is a clock discrepancy between the
transmitter and the receiver. We refer to this clock discrepancy as
the relative clock skew, which remains constant during the TOA es-
timation. If we consider sampling the received signal, the receiver’s
sampling period is a scaling of the transmitter’s sampling period. It
is more convenient to assume that the receiver clock does not change,
the received signal is a scaling of the received one without the rel-
ative clock skew. Hence, we use ex(t) to denote the received signal
when there is a relative clock skew between the transmitter and the
receiver, which is a scaled version of x(t) defined as

ex(t) = x

„
t

1 + Δ

«
, (2)

where 1 + Δ defines the relative clock skew and Δ denotes the rel-
ative clock skew difference to be estimated. The typical range of
Δ is from −80 ppm to 80 ppm according to the IEEE 802.15.4a
standard [1]. Although |Δ| � 1, the accumulated clock drift over
the whole ranging signal1 due to Δ can lead to serious problems in
TOA estimation [4, 5]. In order to estimate the TOA accurately, the
knowledge of Δ is indispensable.

1The length of the ranging signal could be several milliseconds according
to [1].
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3. FREQUENCY-DOMAIN ANALYSIS

Note that the ranging signal periodicity remains even in the presence
of a relative clock skew. For estimation, it will be instrumental that
we first investigate the relationship among the continuous Fourier
transform (CFT), the discrete-time Fourier transform (DTFT) and
the discrete Fourier transform (DFT) of x(t). Let us define the CFT
of φ(t) and x(t) as Φ(f) and X(f), respectively. Obviously,

X(f) =

Z +∞

−∞

x(t)e−j2πftdt =

Z NTf

0

x(t)e−j2πftdt. (3)

Note that X(f) is independent of the observation window length To,
but related to the length of the ranging signal NTf . Using rect(t) to
define a rectangular window that equals 1 for −1/2 ≤ t ≤ 1/2 and
0 otherwise, and realizing that

F

 
rect

„
t

NTf
−

1

2

« +∞X
i=−∞

δ(t − iTf )

!

= Ne−jπNTf f
+∞X

i=−∞

ejπNisinc

„
NTf

„
f −

i

Tf

««
, (4)

we arrive at

X(f) = NΦ(f)e−jπNTf f
L−1X
l=0

αle
−j2πτlf

×

+∞X
i=−∞

ejπNisinc

„
NTf

„
f −

i

Tf

««
, (5)

which is a sum of an infinite number of sinc pulses, whose ampli-
tudes are modulated by NΦ(f)e−jπNTf f PL−1

l=0 αle
−j2πτlf . The

function |X(f)| in the range of [0, 1/(2Tb)] is illustrated in the left
half of Fig. 1, where Tb is a value satisfying 1/Tb ≥ 2B, with B de-
noting the single-sided bandwidth of φ(t), which does not have any
DC components (obviously, the bandwidth of x(t) is determined by
φ(t)). The main lobe (or side lobe) of the sinc pulse has a width
of 2/(NTf ) (or 1/(NTf )), which thus depends on the length of
the ranging signal. The distance between two adjacent main-lobe
peaks is 1/Tf , and there are in total �Tf/(2Tb)� main lobes in the
frequency range [0, 1/(2Tb)]. At the main-lobe peak of each sinc
pulse (f = i/Tf , i = −∞, . . . , +∞), the influence of the side
lobes from the other sinc pulses vanishes. However, the side-lobe ef-
fect remains at other frequencies, which may result in changing the
main-lobe shape. But when N is large enough, the side-lobe effect
can be ignored. Moreover, X(f) = 0, when f = i′/(NTf ), i′ =
−∞, . . . , +∞ and f 	= i/Tf , i = −∞, . . . , +∞. Here, we under-
line that it is the total length of the ranging signal NTf , not the
length of the observation window To, that decides the main-lobe
width of the sinc pulse. Therefore, the spectrum leakage due to the
limited length of the ranging signal is determined by NTf , and To

does not play any role in X(f).
Now let us sample x(t) at rate 1/Tb. Then the DTFT X̄(f) of

the sampled x(t) can be obtained as

X̄(f) =
+∞X

n=−∞

x(nTb)e
−j2πnTbf =

1

Tb

+∞X
i=−∞

X

„
f −

i

Tb

«
, (6)

according to the Poisson summation formula. Due to the sampling
effect, X̄(f) is a periodical extension of X(f) with period 1/Tb.
With 1/Tb ≥ 2B, spectrum aliasing can be ignored. Fig.1 shows
such an example. Recall that the positions of the main-lobe peaks
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Fig. 1. An illustration of the CFT X(f), a single path channel

and zeros of X(f) are defined by a frequency pattern according
to f = i/(NTf ) for i = −∞, . . . , +∞. If Tf/Tb is an integer,
the peaks and zeros of X̄(f) will still follow this pattern. Other-
wise, the frequency pattern changes, and it is periodic with a pe-
riod of 1/Tb as shown in Fig.1. The jth local peak of the ith pe-
riod appears at f = i/Tb + j/Tf , where i = −∞, . . . , +∞ and
j = −�BTf�, . . . , �BTf�.

Recalling that the observation window length is To, we obtain
xn = x(nTb), where n = 0, 1, . . . , M − 1 and M = �To/Tb�.
The DFT Xk of xn is given by Xk =

PM−1
n=0 xne−j2πk n

M , k =
0, 1, . . . , M − 1, which is related to X̄(f) and X(f) via

Xk = X̄(
k

To
) =

1

Tb

+∞X
i=−∞

X

„
k

To
−

i

Tb

«
(7)

≈
1

Tb

„
X

„
k

To

«
+ X

„
k

To
−

1

Tb

««
, (8)

where the last approximation above is due to the fact that 1/Tb ≥
2B. Then, the samples Xk, k = 0, . . . , M − 1 are the result of one
period of X̄(f) sampled at rate 1/To. Define K = To/Tf , which
satisfies K > N + τ0/Tf . Recall that the distance between two
adjacent main-lobe peaks of X(f) is 1/Tf . It follows that if K is an
integer, all the main-lobe peaks in X(f) will be captured by Xk at
k = i′′K and k = M−i′′K, where i′′ =0, 1, . . . , �Tf/(2Tb)� − 1.
This implies that if the observation window length is designed to be
an integer multiple of Tf , the sum of the energy obtained at these
points will be maximized. We also remark that in the discrete do-
main, a longer observation window is equivalent to a zero-padding
operation on xn when computing the DFT.

To illustrate the above ideas, let us show some numerical exam-
ples in Fig. 2 and Fig. 3. The second derivative of a Gaussian pulse is
employed as the transmitted pulse p(t), and the pulse width is trun-
cated to 4 ns, which includes the main lobe and two side lobes. The
impulse response of the front-end filter g(t) is chosen to be identical
to p(t) (matched filtering). As a result, the width Tφ of φ(t) is 8 ns.
The frame period Tf is 100 ns, and we have N = 100 frames in to-
tal. The sampling period Tb is 0.5 ns, which fulfills the Nyquist sam-
pling rate. As we employ a real signal, its DFT obeys the symmetry.
Thus, we only show half of its DFT in the following figures. In
Fig. 2, we assume a single path channel. Fig. 2(a) plots |Xk|, which
is obtained based on an observation window of length To = NTf ,
and τ0 = 0. Therefore, Xk captures the main-lobe peaks of X̄(f).
Note that Tf/Tb = 200 is an integer. Hence, the local peaks are
equally spaced with N −1 zero samples between two adjacent ones.
The double-bell-shaped envelope of |Xk| corresponds to the shape
of Φ(f). Fig. 2(b) shows the case, where the observation window
To = KTf with K = N + 3 being an integer, and τ0 	= 0. As
a result, the DFT Xk can still capture the main-lobe peaks of X̄(f)
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(b) To = (N + 3)Tf and τ0 	= 0
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(c) To = (N + 3.5)Tf and τ0 	= 0

Fig. 2. Examples of |Xk|, different To, a single path channel
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Fig. 3. an example of |Xk|, To = NTf and τ0 = 0, a multipath
channel

with an equi-distant pattern, i.e., these main-lobe peaks are separated
in Xk with K − 1 non-zero samples. Fig. 2(c) indicates the situa-
tion, where the observation window To = KTf with K = N + 3.5
being a non-integer, and τ0 	= 0. As a consequence, the main-lobe
peaks in X̄(f) are missed, although we can still obtain some sam-
ples for the main lobes. Accordingly, the energy contained in these
points will be lower than that in Fig. 2(a) and Fig. 2(b). In Fig. 3, we
use a multipath channel, which is composed of 10 multipath compo-
nents. The amplitudes of the multipath components follow a zero-
mean Gaussian distribution, and the delays are uniformly distributed
in the range of [0, Tf −Tp]. As can be seen, the envelope of |Xk| has
an irregular shape, which is determined by both Φ(f) and the mul-
tipath channel. Since we employ To = NTf and τ0 = 0, |Xk| still
follows the same frequency pattern concerning the positions of the
main-lobe peaks and zeros. Comparing Fig. 2(a) with Fig. 3, we ob-
serve that the multipath channel dramatically changes the amplitude
of the main-lobe peaks of Xk, which now has sharp variations.

As we have mentioned before, due to the relative clock skew
between the transmitter and the receiver clock, the received signal

ex(t) is a kind of scaled version of x(t) given by (2). Making use
of the convolution and the scaling property of the Fourier transform,
the CFT eX(f) of ex(t) is given by

eX(f) = N(1 + Δ)Φ ((1 + Δ)f) e−jπNTf (1+Δ)f
L−1X
l=0

αle
−j2πτl(1+Δ)f

×

+∞X
i=−∞

ejπNisinc

„
NTf

„
(1 + Δ)f −

i

Tf

««
. (9)

eX(f) has a similar frequency pattern as X(f). However, we remark
that the main-lobe width of the sinc pulse is now 2/(NTf (1 + Δ)).
The distance between two adjacent main-lobe peaks is 1/(Tf (1 +

Δ)). Then, eX(f) can be similarly depicted as in Fig. 1, except that
we need to replace Tf with Tf (1 + Δ) in the figure. Accordingly,
we consider an observation window of length

eTo = eKTf (1 + Δ), (10)

satisfying that eTo > NTf (1 + Δ) + τ0. We still sample ex(t) at
rate 1/Tb, assuming that the Nyquist sampling requirement is still
met. We obtain a batch of samples exn = ex(nTb), where n =

0, 1, . . . , � eTo/Tb� − 1. The DFT eXk of exn is calculated as

eXk ≈
1

Tb

„eX „ keTo

«
+ eX „ keTo

−
1

Tb

««
, k=0, . . . ,

$ eTo

Tb

%
−1, (11)

Similar to the previous case without clock skew, we are able to attain
the following two properties for eX(f) and eXk .

Property 1 The frequency distance between two adjacent local
peaks of eX(f) is 1/(Tf (1 + Δ)).

Property 2 If eK is an integer, the local maxima of eXk will also
coincide with the main-lobe peaks of eX(f).

4. RELATIVE SKEW DIFFERENCE ESTIMATION

Intuitively, the estimation of Δ can be achieved by making use of
Property 1 and estimating the average distance between every two
adjacent local maxima of eX(f). However, it is not trivial to achieve
this due to the following reasons: i) we only have eXk as an approxi-
mation of eX(f); and ii) localizing the local maxima of eXk can be an
extremely challenging problem due to the multipath channel, as the
amplitudes of eXk become much less predictable as shown in Fig. 3.
The situation gets even worse if the received signal is also subject to
noise.

A less straightforward method is to resort to Property 2: assum-
ing the knowledge of the integer multitude eK, we try to collect the
maximum energy from the known frequency pattern according to eK
by padding different numbers of zeros to the end of the ranging sig-
nal. To be more specific, making use of 0 ≤ τ0 < Nτ Tf

2, and
Δmax (Δ ∈ [−Δmax, Δmax]), we can first construct a fixed obser-
vation window eTof as eTof = (N + Nτ )Tf (1 + Δmax), to limit the
pure noise samples. As a result, we obtain exn, n = 0, 1, . . . , Lr −1,
and Lr = � eTof/Tb�. We can then try L zeros padded at the end ofexn, where L ∈ RL( eK), and RL( eK) = {Lo, Lo + 1, . . . , Lo +

2LΔ}. Moreover, Lo = � eKTf (1 − Δmax)/Tb� − Lr , and LΔ =

2
Nτ can be obtained by a simple energy detection and Nτ � N

3015



� eKTfΔmax/Tb
, which is the maximum number of samples re-
sulting from the maximum accumulated drift over the whole obser-
vation window. As Lo ≥ 0, then eK ≥ eKmin, where eKmin =
�(N + Nτ )(1 + Δmax)/(1 − Δmax)
. Therefore, eK could be any
integer no less than eKmin. Then, we examine the energy sum col-
lected at the points eXk for k = 0, eK, · · · , (Lf/2 − 1) eK , where
Lf/2 = �Tf (1 + Δmax)/(2Tb)
. Since ex(t) is a real signal, we

only use Lf/2 samples of eXk to reduce the computational complex-
ity. Suppose with L̂ zero padded, the resulting energy sum is maxi-
mized. It then follows that eTo = (Lr + L̂)Tb. With the knowledge
of eTo as well as eK, Δ can be derived. The above operations can be
mathematically summarized as

L̂ = arg max
L∈RL( eK)

PLf/2

q=0 | eXq eK(L)|2

Lr + L
, (12)

eXq eK(L) =

Lr−1X
n=0

ex(nTb)exp(−j2πq eK n

Lr + L
), (13)

RL( eK) = {Lo, Lo + 1, . . . , Lo + 2LΔ}, (14)

Δ̂ =
(Lr + L̂)TbeKTf

− 1, (15)

The following remarks are in order.
Remark 1 A different length of the observation window is actually
achieved in the discrete domain via padding a different number of
zeros. This implies that eTo can only be increased or decreased with
discrete steps of size Tb. The estimate of Δ is discrete. However,
note that according to (15), the resolution of Δ is determined by
both Tb and eKTf . The resolution of Δ can be improved by decreas-
ing Tb or increasing eKTf . The sampling period Tb is restricted by
the system hardware. The side-effect of increasing Tf will be ad-
dressed in the next remark. On the other hand, we have all freedom
to increase eK. It seems that if we can increase eK infinitely, we can
attain a Δ estimate with a super resolution. However, there are two
factors to influence the main-lobe shape: the spectrum aliasing and
the frame number of the transmitted signal N . We address the first
one here, and discuss the second one in the next remark. Spectrum
aliasing may shift the local peaks of the main lobes. Hence, even
if we can infinitely increase eK, we may not improve the resolution
of Δ. Therefore, we need a well-designed front-end filter in order
to avoid spectrum aliasing. On the other hand, increasing eK will
enlarge the search range of L and thus inflict a higher complexity in
solving (12).
Remark 2 Note that the second factor changes the main-lobe shape
through the side lobes from the other sinc pulses. Hence, it is desired
that the main lobes are separated far enough to ignore the side-lobe
effect, which can be achieved by increasing N to a reasonable num-
ber. Furthermore, if the main lobe of eX(f) is narrower, it is more
robust against noise, which can be achieved by increasing N or Tf .
Note that a larger Tf also helps to improve the resolution of Δ. But a
larger NTf takes a longer time for transmission. Hence, we choose
Tf to be just long enough to avoid IFI. In summary, if we can care-
fully design the front-end filter to suppress the spectrum aliasing and
choose a reasonable N to avoid the side-lobe effects, the proposed
method can rearch super resolution.
Remark 3 The proposed method does not need the knowledge of
the multipath channel. Furthermore, the frequency domain analysis
of the ranging signal is very useful. As it can be used to adopt super-
resolution methods to estimate the TOA in the frequency domain,
after we calibrate the clock skew.
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Fig. 4. RMSE of Δ̂

5. SIMULATION RESULTS

The performance of the clock skew estimation is evaluated by simu-
lations using the IEEE 802.15.4a channel model CM1 - indoor res-
idential LOS [7]. The frame period Tf is 200 ns to avoid IFI. The
sampling period Tb is 0.5 ns. To speed up the simulation, we use
Δmax = 2500 ppm. Then, the Δ is randomly selected among
{−2500 ppm, −2450 ppm, . . . , 2500 ppm} in each run. The frame
number of the ranging signal N is 100, and Nτ = 3. Thus, we testeKmin = 105 and eK1 = 195. Moreover, p(t) and g(t) are the same
as used in Fig. 4. The signal-to-noise ratio (SNR) is defined as the
received signal strength to the noise ratio. Fig. 4 shows the RMSE
of Δ vs. SNR. According to (15), we actually test discrete Δs in
the range of {−2500 ppm, −2476.19 ppm, . . . , 2500 ppm} equally
spaced with 23.81 ppm for eKmin, and in the range of {−2500 ppm,
−2487.18 ppm, . . . , 2500 ppm} equally spaced with 12.82 ppm foreK1, respectively. Fig. 4 testifies that a larger eK achieves a much
better accuracy. In the noiseless case, the RMSE of eK1 is just half
of the RMSE of eKmin.
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