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Abstract—This paper is to investigate the carrier frequency off-
set estimation for an orthogonal frequency division multiplexing
(OFDM) communication system. Originating from the Fourier
transform, OFDM uses the modulation of the amplitude and
phase of subcarriers for communications. We propose a new
approach that use the bit-error rate (BER) and the minimum
square error (MSE) of the pilot as merits to achieve the carrier
frequency offset (CFO) estimation of OFDM. The proposed
method achieves lower root mean squared error (RMSE) of CFO
and BER on OFDM compared with conventional methods.

Keywords—Orthogonal frequency division multiplexing (OFD-
M), minimum square error (MSE), bit-error rate (BER), carrier
frequency offset (CFO)

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
wireless communication technology. Multiple subcarriers with
the same bandwidth are orthogonal multiplexed to achieve the
maximum communication rate [1]. The phase and amplitude
of subcarriers can be modulated to carry information [5]. The
modulated subcarriers are orthogonal and do not interfere
with each other during transmission. The discrete Fourier
transform (DFT) is used to realize the digital implementation
of an OFDM system. Due to the clock differences between
transmitters and receivers, the carrier frequency offset (CFO)
destroys the orthogonality among subcarriers, and the result-
ing intercarrier interference degrades the BER performance
severely [14]. Thus, accurately estimating the CFO to relieve
its effects, is very important for restoring the symbols correctly
and realizing high quality communications in OFDM systems
[15].

Methods of CFO estimation can be divided into data-aided
schemes [2][7] and non-data-aided (blind) ones for OFDM
systems [8]-[13], [4] and [6]. An one-dimensional search-
based CFO estimation is proposed in [2] using the minimum
square error (MSE) of the pilot as a metric for DFT-precoded
multiple-input multiple-output (MIMO) OFDM underwater
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acoustic communications. In [7], a training method based on
the transmission of an OFDM symbol with identical halves is
proposed to estimate CFO. In [4], a blind estimation method
is proposed and a maximum likelihood CFO estimator is
established based on two continuous and identical received
blocks, where the candidate CFO is limited to less than
half of the subcarrier interval. In [1], the authors investigate
identifiability of non-data-aided schemes for CFO estimation
based on null subcarriers. They show that the conventional
approaches might suffer from channel zeros on the FFT grid
and propose a new approach where the null subcarriers are
placed with distinct spacings.

The method in [2] obtaining the MSE of the pilot to conduct
CFO estimation has a good effect under ideal circumstances
without the effect of multipath and noise. However, we find
that there are several local minimums with similar values of
the square error of the pilot. With the complexity of multipath
and noise, these minimum points are easily confused, Thus
sometimes the correct minimum value cannot be obtained
by using this method. The correct CFO cannot be estimated.
Sequentially, we observe that the interval where the BER of
the pilot is close to zero contains the correct MSE of the
pilot. Thus in this paper, we propose firstly we can use the
BER of the pilot to determine the interval which contains the
correct CFO value leading to the MSE of the pilot. Then, we
use the MSE of the pilot to obtain the CFO estimate. The
improved algorithm can achieve good performance under the
multipath effect and Gaussian white noise on CFO estimation.
We successfully estimate the CFO of OFDM system through
simulation, the error of the estimated CFO is lower, and the
signal recovered after channel equalization and CFO compen-
sation also has a lower BER than the one in [2].

Notation: (.)∗, (.)T and (.)H stands for conjugate, transpose
and Hermitian transpose respectively. a ∗ b denotes the con-
volution operation between a and b. A† denotes the pseudo
inverse of the matrix A. Matrix IN denotes a N ×N identity
matrix and 01×N stands for the 1 × N all-zeros vector.
Moreover, Xi,j denotes the i-th row of the j-th column of
X. Finally, SP and SD denotes the pilot part and the data



part of the signal S, respectively.

II. SYSTEM MODEL

We consider an OFDM block transmission with a cyclic
prefix (CP) to avoid interblock interference (IBI). An OFDM
block consists of P pilot symbols and D data symbols, thus
the block length K = P + D. The chirps with indices from
the set P (P = {I1, I2, ..., IP }) are reserved for the pilot
symbols and the chirps with indices from the set D (D =
{J1, J2, ..., JD}) are taken by the data symbols. The set D
and the set P constitute the set K = {0, 1, 2, ...,K − 1}. The
pilot symbols are used for both the channel estimation and
the CFO estimation on the receiver side. The symbol vector
is represented as x = [S0, S1, ..., Sk, ..., SK−1]T , in which the
pilot symbols are marked as {SI1 , SI2 , ..., SIp , ...SIP } and the
data symbols are marked as {SJ1 , SJ2 , ..., SJd , ...SJD}. After
modulating S with the IDFT matrix FH, we obtain a time
domain signal

s = FHS (1)

where s = [s0, s1, ..., sk, ..., sK−1]T . In order to eliminate the
intersymbol interference caused by the multipath effect, the

CP is inserted by the matrix Tcp =
[
IT
L×K ITK

]T
, where L is

the length of the CP. It is longer than the maximum channel
delay L, and IL×K consists of the last L rows of IK [1]. After
the insertion of the CP, we obtain the transmitted signal:

u = Tcps = TcpF
HS (2)

where the transmitted signal u = [u0, u1, ..., un, ..., uN−1]T

with the length N = L+K.
The signal suffers from the multipath effect and CFO after

propogating through the channel. The n-th component of the
recieved signal is represented as

r̄n = ejωon
L∑
l=0

h(l)un−l + wn (3)

where {h(l)}Ll=0 is the order-L multipath channel with a total
number of L+ 1 paths. ωo is the CFO and wn is the additive
noise with a power of σ2

w. The matrix form of (3) can be
expressed as

r̄ = DN (ω0)(H0u + H1ū) + w (4)

where r̄ = [r̄0, r̄1, ..., r̄n, ..., r̄N−1]T , and DN (ω0) =
diag[1, exp(jω0), . . . , exp(j(N − 1)ω0)]T .The channel ma-
trix H0 is a N × N lower triangular Toeplitz, and H1

is a N × N upper triangular Toeplitz. H0’s first colum-
n is [h(0), h(1), ..., h(L), 0, ..., 0]T and H1’s first row is
[0, ..., 0, h(L), h(L − 1), ..., h(1)] [4]. ū is the symbol from
the previous block. Furthermore, w = [w0, w1, ..., wN−1]T is
the additive white Gaussian noise (AWGN) vector.

The CP is removed at the receiver by deleting the first L
elements of r̄ in (7). This is accomplished through the CP
removing matrix Rcp =

[
0K×L IK

]
that yields r = Rcpr̄.

RcpH1 = 0N×P and we confirm that RcpDN (ωo) =

ejωoLDK (ωo)Rcp [1]. Using (4) and the expression for u
from (2), defining H = RcpH0Tcp and v = Rcpw, we obtain
the following input-output relationship after the CP removal

r = ejωoLDK (ωo)HFHS + v (5)

It is easily verified that H is a circulant matrix with [H]k,l =
h((k − l) mod N). For wireless communications, the CFO
estimation is a typical issue, and a proper estimation and
compensation is necessary for achieving a good system per-
formance.

III. THE PROPOSED CFO ESTIMATING METHOD

In this section, we investigate CFO estimation. The algo-
rithm flow is shown in Fig. 1, which consists of the CFO
estimation and compensation unit, the channel estimation and
equalization unit, and the DnFT demodulation unit. Through
these operations, we can ultimately obtain the resumed sig-
nal Ŝ, which contains the original information. Since both
the channel and the CFO are unknown, we estimate them
alternatively. Firstly, we ignore the channel to estimate the
initial CFO as ω̂

(0)
0 , and we utilize ω̂

(0)
0 to conduct the

tentative CFO compensation. Then we estimate the channel as
Ĥ(0) based on the tentative CFO compensation. In turn, we
proceed the tentative channel equalization with Ĥ(0), based
on which we obtain a more accurate CFO estimation ω̂(1).
Then we repeat the above steps for M (M is about 5) times to
obtain the precise CFO estimation ω̂0 and channel estimation
Ĥ. Afterwards, we conduct the CFO compensation and the
channel equalization, respectively, with ω̂0 and Ĥ. Ultimately,
the DFT demodulation is proceeded to obtain the resumed
signal Ŝ.

A. Channel Estimation

Assume that we already have tentatively compensate CFO
with ω̂

(i)
0 , As the iterations progress, ω̂(i)

0 becomes more
precise. Thus, we just regard e−jω̂

(i)
0 LDK

(
−ω̂(i)

0

)
approx-

imately eliminate the CFO, which can be indicated as

rh = e−jω̂
(i)
0 LDK

(
−ω̂(i)

0

)
r ≈ HFHS + vh (6)

where rh is prepared for further channel estimation, and vh =

e−jω̂
(i)
0 LDK

(
−ω̂(i)

0

)
v. Furthermore,

rh = Hs + vh = h ∗ s + vh (7)

We apply DFT transform on both sides of (7) to express it in
the frequency domain as

Rh = SdF̃h + Vh (8)

where Rh = Frh, Sd = diag{S}, and F̃ consists of the first
L+ 1 columns of F.

Since the pilot symbols {SI1 , SI2 , ..., SIp , ...SIP } and the
data symbols {SJ1 , SJ2 , ..., SJd , ...SJD} are not overlapped



Fig. 1. The alternative CFO and channel estimation

in S, the received signal related to the pilot symbols is
conveniently extracted from Sd. It results in
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h
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(9)

In its compact form, (9) becomes

RP
h = SPd F̃

Ph + Vh (10)

Based on (10), the least squares (LS) channel estimation is
obtained as

ĥ = (SPd F̃
P )†RP

h (11)

There are L+ 1 unknown channel taps to be estimated and to
obtain a reliable estimation, P ≥ L+ 1 is required.

B. CFO Estimation

With the channel estimation in Section III-A as a prerequi-
site, the pilot-based CFO estimation can be performed. For
a given CFO candidate ω, we perform the tentative CFO
compensation as in (6).

r̃ = ej(ω0−ω)LDK (ω0 − ω)Hs (12)

With the estimated channel, the equalization can be per-
formed. For the purpose of the CFO estimation, the equal-
ization only needs to be performed for the pilot symbols.
Specifically, for the pilot symbols with the index Ip, the
equalized pilot symbols are

ŜP (ω) =
(
ĤP
d

)†
RP (ω) (13)

where ŜP (ω) = {ŜI1(ω), ŜI2(ω), ..., ŜIP (ω)} is the estima-
tion of SP = {SI1 , SI2 , ..., SIP } (the pilot part of S) given
the tentative CFO compensation with ω. ĤP

d = diag{F̃P ĥ},
R(ω) = Fr̄, and RP (ω) consists of components of R(ω) with
the index Ip. ĤP

d consists of the channel frequency domain
component corresponding to the pilot with index Ip. By (18),
we can obtain the equalized pilot symbols ŜP (ω) only by
using RP (ω) instead of using the whole signal R(ω). With
the equalized pilot symbols {ŜIp(ω)}, we define the following
CFO estimation metric:

C(ω) =

P∑
p=1

∣∣∣ŜIp(ω)− SIp
∣∣∣2 (14)

If the CFO is correctly compensated, the square error given in
(14) tends to be small. Hence, the estimate of ω0 is obtained
as:

ω̂0 = arg min C(ω) (15)

Note first that ω̂0 = ω0 implies ej(ω0−ω)LDN (ω0 − ω) = IN
and r = Hs = h ∗ s in (17). Take the Fourier transform of
both sides of the r = h ∗ s, we have

R(ω) = HdS(ω) (16)

Since the pilot symbols and the data symbols are nonoverlap-
ping in S, we have

RP (ω) = HP
d S

P (ω) (17)

and
SP (ω) =

(
HP
d

)†
RP (ω) (18)

If the estimation of Hd is reliable, ĤP
d is close to HP

d . Hence,
ŜP (ω) is approximated to SP (ω) and C(ω) become very
small.



In order to find the closest CFO estimation ω̂0 to ω0, we use
the one-dimensional search algorithm. The search procedure
is divided into the following two steps. Firstly, we perform a
coarse search over the candidate interval [−ωm, ωm] (ωm can
be set to π because the period of CFO is 2π) with a coarse step
size µc, leading to the coarse CFO estimation ωc. Second, we
narrow the candidate interval to a smaller range (ωc−µc, ωc+
µc), and we perform a fine search over it with a fine step size
µf to produce a more accurate CFO ωf estimation [2]. We
can repeat the second step over a smaller candidate interval
with a finer step size to obtain a more accurate ω0 estimation.

However, through the simulation we find there are several
local minimums of C(w) with similar values and only one
of them refers to the correct CFO. After passing a multipath
channel with white gaussian noise, the true minimum is hard
to be distinguished among the local minimums. We find that
the bit error ratio (BER) of pilot can lead to a certains interval
which only contain the true minimum. Thus, we propose an
improved method to achieve a more accurate CFO estimation.
Firstly, we use the one-dimensional search algorithm to obtain
an interval [c, d] where the BER of the pilot is smaller than
E (E can be to about 0.15 according to the experience). Then
we use the one-dimensional search algorithm to obtain the ω0

estimation among [c, d].

IV. SIMULATION RESULTS

In this section, we illustrate the estimated results through
computer simulations. We use multipath channels and AWGN
with zero-mean and variance σ2

ω . The definition of signal-to-
noise ratio (SNR) is SNR = δ2/σ2

ω with normalized channel
variance (i.e., σ2

h = 1), where δ2 is the energy per symbol.
The amplitudes of paths follow a Rayleigh distribution with
the average power decreasing exponentially with the delay.
The power difference between the first path and the last one
is 20 dB.

Fig. 2. The cost function C(ω) in (19) vs. CFO with the true CFO being
0.224 and SNR = 1 dB

Algorithm 1 One-Dimensional Search-Based CFO Estimation
with the BER and the Square Error of the Pilot
Input:

The candidate interval [−ωm, ωm];
The size-Nc CFO candidate array Ω, Ω(nc) = −ωc +
2(nc − 1)ωm/(Nc − 1), nc = 1, ..., Nc.

Initialization:
The empty metric set B = {};
The empty metric set M = {}.

Interval narrowing:
FOR nc = 1 TO Nc

1: Take the ncth candidate CFO ω = Ω(nc);
2: Perform the CFO compensation

r = ej(ω0−ω)LDK (ω0 − ω)Hs as in (17);
3: Perform the LS equalization on the pilot portions as in

(18) to obtain ŜP (ω);
4: If the BER of ŜP (ω) is less than E , push ω into B;

END
Take the first and the last element of B as c and d
respectively to obtain the new candidate interval [c, d];

Fine estimation:
FOR nd = 1 TO Nd

5: Take the ndth candidate CFO ω = Θ(nd);
Θ(nd) = c+ (nd − 1)(d− c)/(Nd − 1), nd = 1, ..., Nd;

6: Perform the CFO compensation
r = ej(ω0−ω)LDK (ω0 − ω)Hs as in (17);

7: Perform the LS equalization on the pilot tones as in (18)
to obtain ŜP (ω);

8: Compute the metric C(ω) as in (19) and push it into M;
END
Find the minimum of the Nc metrics inM in (20), and the
corresponding CFO candidate is the final CFO estimation.

Output:
The estimated CFO ω̂0.

In Fig. 2 and Fig. 3, we set the CFO to be 0.224 and SNR
to be 1. Fig. 2 shows the trend of C(ω) with ω, from which
we can find there are several local minimums. It is risky to
directly use C(ω) as in (20) to perform the estimation. Fig. 3
shows the trend of the pilot BER versus ω. It is obvious the
pilot BER has a valley when ω is nearby 0.224. Because the
BER curve is not smooth, we can not directly gain the accurate
CFO estimation. But we could obtain a smaller interval which
contains the CFO.

Fig. 4 shows the root mean squared error (RMSE) of the
estimated CFO with different methods on OFDM. Fig. 5 shows
BER of the demodulated signal with different methods on
OFDM. The curves with the circular markers demonstrate the
performance of method in [2], respectively. Furthermore, the
curves with the square markers demonstrate the performance
of our method. The CFOs estimated by our method have small-
er RMSE. After CFO compensation and channel equalization,
we can demodulate the signal. We achieve a lower BER, which
means the recovered signals are more reliable with our method.



Fig. 3. BER of pilot symbols vs. CFO with the true CFO being 0.224 and
SNR = 1 dB

Fig. 4. RMSE of CFO vs. SNR under multipath channels

V. CONCLUSION

In this paper, we propose a new data-aided method to
achieve CFO estimation for OFDM. We set the pilot to achieve
both channal estimation and CFO estimation for OFDM. We
show that the conventional approach of [3] might perform
not so well under the severe effect of multipath and AWGN.
Furthermore, We use the BER and the MSE of the pilot as
the metrics to estimate the CFO by one-dimensional search.
Ultimately, we achieve lower RMSE and BER on OFDM
through the new method.
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