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Abstract—In this paper, a time-of-arrival (TOA) estimation
scheme with clock drift calibration is proposed using an impulse-
radio (IR) ultra-wideband (UWB) signal. We adopt low-rate
stroboscopic sampling, which can achieve an equivalent sampling
rate as high as the Nyquist sampling rate. The clock drift is one of
the main error sources in TOA estimation for the stroboscopic
sampling IR-UWB system, since a long preamble is required
to collect sufficient data samples. Therefore, the drift is taken
into account in our system model. First, the maximum-likelihood
estimate of the drift is computed. Then, we employ the peak
selection or the leading edge detection to estimate the TOA using
the averaged data samples calibrated for the drift. Simulation
results corroborate that the drift calibration significantly reduces
the TOA estimation errors due to the drift, and that stroboscopic
sampling can achieve the same estimation resolution as Nyquist
sampling.

I. INTRODUCTION

Ultra-wideband (UWB) radio is a promising technology for

high resolution ranging [1]–[4]. To detect the first arriving

component, we can estimate the time-of-arrival (TOA) with

high resolution, which facilitates accurate ranging. In a line-of-

sight (LOS) environment, the first path is usually the strongest

one and we can perform peak selection [5], [6], whereas in a

non-line-of-sight (NLOS) scenario, the first path normally is

not the strongest one, in which case we have to set a threshold

to detect the leading edge [5], [6].

Due to the large bandwidth of the impulse-radio (IR)

UWB signal, its multipath channel components are resolvable.

However, for the same reason the IR-UWB system requires

a Nyquist sampling rate of several tens of GHz. This is

prohibitively high for practical implementations. Most ranging

systems [3], [7] are based on Nyquist sampling. Research has

focused on sub-Nyquist sampling, using the stored reference

(SR) correlator [5], the energy detector (ED) [5], or the

transmitted-reference (TR) receiver [5], [8], where the noise-

less template, the received signal itself, or its delayed version

are used as templates for energy collection, respectively. In all

these schemes, the accuracy of TOA estimation is sacrificed

for sub-Nyquist sampling.

This research was supported in part by STW under the Green and Smart
Process Technologies Program (Project 7976).

The purpose of this paper is to obtain a high resolution TOA

estimate with low sampling rate. We make use of stroboscopic

sampling, which is widely used in channel measurements [9].

It can obtain an effective sampling rate as high as several GHz

using a low-rate sampler running at several tens or hundreds

of MHz with the penalty of repetitively transmitting the same

waveform. Since we have to transmit several identical pulses

in order to collect the same samples as when transmitting

one pulse sampled by an equivalent high sampling rate, the

preamble for ranging is long. As a result, the clock drift, which

refers to the phenomenon where the clock does not run at the

nominal frequency, becomes one of the main error sources.

Although a symmetric double-sided two-way ranging (SDS-

TWR) protocol as in [1], [4] can reduce the ranging error due

to clock drift significantly by relating the drift to the difference

of the processing times at two devices instead of the processing

time at one device, it can not calibrate for the TOA estimation

error caused by the clock drift. A trellis-based maximum-

likelihood crystal drift estimator is introduced in [10], [11]

to solve this problem. However, the system sampling rate is

still as high as several GHz. Furthermore, it does not consider

the code mismatch due to the drift and the unknown TOA,

which can cause serious problems. Therefore, we design a

ranging preamble, solve the code mismatch problem and apply

a maximum-likelihood estimator (MLE) to estimate the clock

drift in our stroboscopic sampling IR-UWB system. After the

drift calibration, the TOA estimation is carried out using peak

selection or leading edge detection. Consequently, we calibrate

for the timing error caused by the clock drift and achieve an

accurate TOA estimate with low sampling rate.

The rest of this paper is organized as follows. In Section 2,

we will first introduce the stroboscopic sampling principle.

The clock drift is taken into account in the system model and

the preamble is designed to facilitate the drift calibration. In

Section 3, we propose a method to estimate the TOA with

drift calibration. Simulation results are shown in Section 4.

Conclusions are drawn at the end of the paper.

Notation: We use upper (lower) bold face letters to denote

matrices (column vectors). x(·) (x[·]) represents a continuous

(discrete) time sequence. X(m, n), X(m, :) and X(:, n) de-
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Fig. 1. The receiver’s analog front-end. The output of the front-end filter is
sampled at rate 1/Tsam , which is smaller than its Nyquist sampling rate 2B.

note the element on the mth row and nth column, the mth

row, and the nth column of matrix X, respectively. 0m (1m)

is an all-zero (all-one) column vector of length m. Moreover,

(·)T , | · |, ‖ · ‖F and ⋆ designate transposition, absolute value,

Frobenius norm and convolution, respectively. ⌊x⌋ represents

the largest integer smaller than or equal to x. All other notation

should be self-explanatory.

II. SYSTEM MODEL

The preamble for ranging is composed of many frames.

Each frame period Tf holds one pulse. We assume that Tf

is larger than the delay spread of the channel in order to

avoid inter-frame interference (IFI), e.g., Tf = 100 ns. The

receiver employs a front-end filter to select the band of interest

as shown in Fig. 1. The impulse response of the front-end

filter does not have to be the received pulse shape, which is

unknown due to the distortions caused by the channel and

the antennas. For instance, it can be the transmitted pulse. In

general, we specify the filter in the frequency domain in order

to capture most of the signal energy in the band of interest. The

bandwidth B of the front-end filter is quite large because of the

bandwidth of the UWB signal. Hence, the Nyquist sampling

rate becomes prohibitively high. For example, if we transmit

pulses with a bandwidth of 500 MHz, a sampling rate of at

least 1 GHz is required at the receiver. Therefore, we resort to

stroboscopic sampling [9] to sample the output of the front-end

filter at rate 1/Tsam, which is much smaller than its Nyquist

sampling rate 2B, i.e., Tsam ≥ 1/2B. Consequently, each

frame produces in ⌊Tf/Tsam⌋ or ⌈Tf/Tsam⌉ samples.

Since we apply stroboscopic sampling, several identical

frames have to be transmitted in order to collect sufficient

number of samples that are equivalent to those obtained by

sampling one frame at a higher rate. We define the equivalent

high sampling rate as 1/Tb, which satisfies the condition

Tb ≤ 1/2B in order to prevent frequency aliasing. The

resolution of TOA estimation is also Tb (≤ Tsam). The

relationships among Tsam, Tf , and Tb are given as follows

Tsam = mTb, (1)

Tf = (mP + n)Tb, (2)

where m ≥ 1 is the sampling gain, P = ⌊Tf/Tsam⌋ is the

minimum number of samples collected from one frame and

m > n ≥ 0. These parameters are all integers. Moreover, m
and mP +n should be relatively prime. Under the condition of

m = 1 and n = 0, the system becomes the Nyquist sampling
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Fig. 2. The noiseless output of the front-end filter at the receiver. (a) The
ideal case, no drift and τ = 0, (b) no drift and τ 6= 0 and (c) with drift and
τ 6= 0.

system. When designing the sampling gain m, we would like

it to be as large as possible to lower the sampling rate. On

the other hand, it has to be small to shorten the preamble.

There is a design trade-off. Using m frames to collect mP +
n samples is equivalent to sampling one frame at rate 1/Tb.

Figure 2(a) shows an example. The waveform x(t) represents

the output of the front-end filter. In the example, m = 3, P = 3
and n = 2, which leads to Tf = (mP + n)Tb = 11Tb. We

collect 11 samples in a time duration of 3Tf . These samples

are equivalent to those obtained by sampling one frame at the

output of the front-end filter at rate 1/Tb, and permuting as

shown at the right side of Fig. 2(a).

The relative clock drift between the transmitter and the

receiver voilates the relation in (2). That is because Tf is

with respect to the transmitter, while Tsam is with respect

to the receiver. When we apply stroboscopic sampling at

the receiver, we require a long preamble in order to obtain

sufficient number of samples. But since the relative clock

drift ratio can be as large as 80 ppm [1], the drift of the

preamble can lead to serious problems in TOA estimation.

For example, a 1 ms preamble would account for an 80 ns

clock drift. Therefore, we have to calibrate for the clock drift

at the receiver for accurate ranging. Figs. 2(b) and 2(c) indicate

examples without and with clock drift, respectively, where ∆
is the relative clock drift ratio and τ is the TOA. In Fig. 2(b),

the timing information can be retrieved after permuting the

sample sequence, whereas in Fig. 2(c) the original waveform

can not be recovered due to the clock drift, and the timing

information is lost.

We assume the clock drift ratio remains constant. In order

to suppress the noise and simplify the problem, we define

a group of frames as a cluster, whose duration is smaller

than the minimum time period required to observe a drift of

Tb. Therefore, relation (2) is roughly maintained within the

cluster. Recalling that 1/Tb is larger than 2B, a maximum

drift Tb of a cluster is smaller than the width of the pulse.

Hence, frame samples can be averaged over the cluster without

severe pulse mismatch. We recall that Tb is the resolution for
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TOA estimation. The cluster period is defined as NfTf , where

Nf = mM . It has to satisfy the following condition [10], [11]

NfTf∆max = mMTf∆max ≤ Tb, (3)

where M > 0 is the processing gain, and ∆max is the maxi-

mum clock drift ratio at the transmitter relative to the receiver.

For instance, if the targeted Tb is 1 ns, Tf = 100 ns, and ∆max

is 80 ppm, then Nf ≤ 125, which means mM ≤ 125. A

proper choice of m could be 9, which indicates a sampling rate

of 1/Tsam = 111.1 MHz or a sampling period of Tsam = 9 ns.

As a result, the largest processing gain M can be 14. The

outcome of the cluster averaging are mP + n samples of one

frame.

In order to achieve TOA estimation, we could design the

preamble to be composed of several segments, each of which is

dedicated to different purposes, such as signal detection, coarse

synchronization and fine synchronization. Each segment could

have a different structure to facilitate its task. The structural

design of the whole preamble is out of the scope of this paper.

We assume coarse synchronization has already been carried

out. More specifically, we assume that the TOA τ is in the

range of one frame period with respect to the receiver, i.e.,

τ ∈ [0, (1 + ∆)Tf ), where (1 + ∆)Tf ≈ Tf , since Tf is

only several hundreds of ns and ∆ ≤ 80 ppm. Therefore,

we only concentrate on designing the preamble for the fine

synchronization to estimate the τ . We assign a code chip to

each cluster instead of each frame in order to avoid code

mismatch during the averaging due to the unknown τ and the

clock drift, which is not considered in [10], [11]. Based on

the analysis above, the structure of the transmitted preamble

is shown in Fig. 3(a). The preamble is composed of Nc

clusters, where every cluster is made up of Nf frames, each

one containing one pulse. The transmitted signal is

s(t) =

Nc−1
∑

i=0

ci

Nf−1
∑

j=0

p(t − (iNf + j)Tf ), (4)

where ci is the cluster code chip and p(t) is the transmitted

pulse shape. Figs. 3(b) and 3(c) show the noiseless received

preamble through an additive white Gaussian noise (AWGN)

channel with unknown τ and different clock drifts. As we can

observe from the figures, there is a code mismatch due to the

unknown τ and the clock drift. The last several frames of the

clusters in Fig. 3(b) are mismatched due to the unknown τ and

the negative drift, while the first several frames of the clusters

in Fig. 3(c) are mismatched as a result of the unknown τ and

the positive drift. We cut off the first and last m frames of the

cluster to get rid of the code mismatch in the averaging process

at the price of reducing the processing gain from M to M−2.

As illustrated in the previous example, an 80 ppm drift ratio

may cause an 80 ns clock drift for a 1 ms preamble. Due to this

drift and the unknown τ ∈ [0, 100 ns), the timing offset at the

last frame of the preamble will be in the range of [τ−80 ns, τ+
80 ns), which leads to a timing offset range of [−80 ns, 180
ns]. The m frames we omit provide a guard time, which is

larger than the timing offset range. Hence, it can prevent code

mismatch. When m = 1, however, the timing offset range is

larger than the guard time, and the last frame still suffers from

a code mismatch even after frame removal. Nevertheless, since

we average lots of frames over the cluster in case m = 1, a

code mismatch in one frame does not introduce a big influence.

The received preamble is

r(t) =

Nc−1
∑

i=0

ci

Nf−1
∑

j=0

h(t−(iNf +j)Tf(1+∆)−τ)+n(t), (5)

where ∆ is the clock drift ratio, h(t) = hp(t) ⋆ p(t) of length

Th < Tf is the aggregate channel, with p(t) the transmitted

pulse and hp(t) the UWB physical multipath channel, and n(t)
is the zero-mean AWGN with double sided power spectral

density N0/2. We assume hp(t) =
∑L−1

l=0 αlδ(t− τl,0), where

L indicates the number of multipath components, and αl and

τl,0 represent the amplitude and the relative time delay of the

lth path with respect to the first path, respectively. It is obtained

by τl,0 = τl − τ0, where τi is the multipath delay and τ0 = τ
is the TOA. With the received signal r(t), the output of the

front-end filter is

x[k] =

∫ +∞

−∞

r(t)g(kTsam − t)dt, k = 0, 1, . . . , (6)

where g(t) is the impulse response of the front-end filter,

whose bandwidth is large enough to include the band of

interest. We define Lf = Tf/Tb = mP + n as the frame

length in terms of the number of samples at rate 1/Tb and

xk = [x[kLf ], x[kLf + 1], . . . , x[(k + 1)Lf − 1]]
T

, which is

an Lf -long sample vector for the kth equivalent frame. Notice

that xk is the result of sampling m frames at rate 1/Tsam at

the receiver. Further, the samples are divided into clusters. We

exclude the first and last sample vectors in each cluster to get

rid of the code mismatch in the averaging process. The results

are collected in a data matrix X of size Lf × Nc as

X =
1

M − 2

[

M−2
∑

k=1

xk

M−2
∑

k=1

xM+k . . .

M−2
∑

k=1

x(Nc−1)M+k

]

,

(7)

where each column of X contains its own specific code chip.

III. TOA ESTIMATION WITH CLOCK DRIFT CALIBRATION

A. Recovery from stroboscopic sampling

Due to the stroboscopic effects, we have to permute all

the averaged frame samples in each column of X before we

calibrate for the drift and estimate the TOA τ . The adjacent

Tsam-spaced samples obtained by stroboscopic sampling are

not the adjacent Tb-spaced samples in the equivalent high

sampling rate scheme as shown in Fig. 2(a). The maximum

drift observed in a cluster is Tb, which is much smaller than

the sample spacing Tsam in the stroboscopic sampling scheme,

and exactly equal to the sample spacing in the equivalent

high sampling rate scheme. Therefore, we have to recover the

equivalent high sampling rate sequence before drift calibration

in order to observe the drift between the adjacent clusters.
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According to (2), we define a permutation matrix W of size

Lf × Lf , whose first row is W(1, :) = [0T
m−1, 1,0T

Lf−m].
Further, every row is a circulant shift of the previous row,

which means that

W(i + 1, :) = {circshift(W(i, :)T , m)}T , i = 1, . . . , Lf − 1,
(8)

where circshift(a, n) circularly shifts the values in the vector a

by |n| elements (down if n > 0 and up if n < 0). Since W is

a permutation matrix, we have WWT = I and W−1 = WT .

The rearrangement is accomplished by

Xo = WT X, (9)

where each column of Xo collects the permuted averages for

each cluster. Now, the equivalent sample spacing in Xo is Tb.

B. Maximum likelihood estimator of clock drift

In order to estimate the TOA, we would like to use all

the data samples in Xo. This allows us to obtain an averaged

sample vector over all the clusters and thereby reduces the

noise. However, due to the clock drift, the equivalent frame

waveforms do not align with each other. We have to calibrate

for the drift before TOA estimation. Let us define the row

index of the data matrix Xo as the frame phase, similar to

the pulse repetition period (PRP) phase in [10], [11]. We

recall that the maximum drift observed over a cluster duration

is Tb, which means that the frame phase of a cluster may

correspond to the same or an adjacent phase in the next

cluster. This kind of correspondence is called the transition

between frame phases. The drift estimation traces the correct

transition path of the frame phase within the duration of the

preamble. A transition takes place between two contiguous

clusters, and the step for each transition could be zero or

one frame phase. Every frame phase has the same set of

transition paths. We remark that the exact number of the drift

ratio is not the main concern, but the transition path is the

target of the drift estimation. Based on this path, we can

calibrate for the drift, obtain an averaged sample vector for the

whole preamble, and then estimate the TOA. The resolution

of the drift estimation is ∆max/(Nc −1). The total number of

transition paths for each frame phase is 2Nc − 1. Therefore,
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Fig. 4. The diagram of the transition paths and the matrix Λ, Nc = 5 and
Lf = 13.

the longer the preamble, the more accurate the drift estimation.

Nevertheless, the complexity of the estimation would also

increase as the number of transition paths increases.

Fig. 4 shows some examples of transition paths. In the

example, Nc = 5 and Lf = 13. The dots represent the

elements of the matrix Xo. The spacing between contiguous

samples is Tb. Based on Fig. 4, we reconfirm that the data

matrix X can not be used directly. Some of the transition

paths for frame phase 6 are shown. Path 0 indicates that we

can observe a phase transition for every cluster, and the kth

phase of the ith cluster transfers to the (k − 1)th phase of

the (i + 1)th cluster. It reaches the negative maximum drift.

Path 2 denotes one transition for every two clusters. Both of

the paths indicate negative drift. In path 4, no clock drift is

observed. Path 5 shows one transition for every four clusters,

which corresponds to a resolution of the drift ratio estimation

given by ∆max/4. Finally, path 7 shows three transitions for

every four clusters. The last two paths show positive drift. The

number of all possible transition paths for each frame phase

is 2Nc − 1 = 9. There are special cases we have to be careful

with. For example, in path a for phase 1, there is a negative

shift of one phase every cluster. Therefore, phase 0 of cluster 1
transfers to phase 12 of cluster 2 as shown by the dashed line

with solid arrow in the figure. Meanwhile, path b for phase 9
describes a positive shift of one phase every cluster. Hence, as

denoted by the dashed line with hollow arrow in Fig. 4, phase

12 of cluster 3 transfers to phase 0 of cluster 4. The transition

takes place circulantly. We have excluded the code mismatch

during the cluster averaging process by cutting off the first and

last sample vectors. However, the phase mismatch due to the

clock drift still causes serious problems for TOA estimation.

All the transition paths for any phase are modeled in a

matrix Λ of size (2Nc − 1)×Nc. For instance, Λ for Nc = 5
is shown at the right side of Fig. 4. The path number in

Fig. 4 corresponds to the row index of Λ. Making use of

the transition matrix and recalling the cluster code, we carry
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out a maximum-likelihood search for the clock drift and the

strongest multipath component jointly [10], [11].

[kmax, jmax] = argmax
k,j

∣

∣

∣

∣

∣

Nc−1
∑

n=0

cnXo(p, n)

∣

∣

∣

∣

∣

, (10)

k ∈ {0, . . . , Lf − 1},

j ∈ {0, . . . , 2Nc − 2},

p = mod
(

(k +
n

∑

i=0

Λ(j, i)), Lf

)

, (11)

where kmax represents the index of the strongest multipath

component and jmax is the row index of the selected path in

Λ. The function mod(a, b) computes a modulo b. Since all

the phases have the same set of transition paths, we can also

process the maximum-likelihood search for the transition path,

which collects the maximum energy over the whole preamble

in order to be more robust to noise. This leads to

j′max = arg max
j∈{0,...,2Nc−2}

Lf−1
∑

k=0

∥

∥

∥

∥

∥

Nc−1
∑

n=0

cnXo(p, n)

∥

∥

∥

∥

∥

2

F

, (12)

where j′max is also the row index of the selected path in Λ

and p is computed in the same way as (11).

C. TOA estimation

Until now, we have estimated the transition path for the

clock drift using two methods, (10) and (12). The index of

the strongest multipath component is obtained at the same

time by (10). Thus, the TOA estimation according to peak

selection [5], [6] is given by τ̂p = kmaxTb, as a result of (10).

In a non-line-of-sight (NLOS) scenario, the first path may not

be the strongest path. Therefore, we resort to the leading edge

detection [5], [6] to find the index of the first frame phase,

whose absolute value is larger than a threshold.

Consequently, we average related phases of Xo over the

whole preamble according to the transition path Λ(jmax, :)
to calibrate for the drift and further mitigate the noise, and

collect the outcomes in a sample vector y, whose elements

are computed as:

y[k] =
1

Nc

Nc−1
∑

n=0

cnXo(pmax, n), k = 0, 1, . . . , Lf − 1, (13)

where pmax is obtained by plugging Λ(jmax, :) into (11). The

sample vector y′ is obtained in the same way using j′max. The

vector y (y′) is used for TOA estimation. As a result, the total

processing gain for TOA estimation is Nc(M − 2). We carry

out the leading edge detection by first finding the index of

the strongest component, where kmax is already obtained by

(10) and k′
max = max |y′[k]|, k = 1, . . . , Lf − 1. Secondly, a

threshold γ (γ′) is selected and a backward search window of

length Lw is defined. Finally, we execute a backward search

starting from kmax (k′
max) to find out the index of the first

|y[k]| (|y′[k]|) exceeding the threshold inside the window. The

threshold can be derived by analyzing the stochastic properties

of y (y′) and then applying detection theory. In the absence of

channel information, we follow a heuristic approach and set

the threshold to γ = ηt|y[kmax]| (γ′ = ηt|y
′[k′

max]|), where

0 ≤ ηt ≤ 1 is the threshold ratio. The length Lw of the

backward search window depends on the characteristics of the

multipath channel. It should be small enough to avoid the case

where we mistakenly regard the channel tail as the first path,

whereas it should be large enough to recover the first path

instead of the deadlock to the strongest one. However, due

to the lack of channel knowledge, we choose Lw to be ηlTf ,

where 0 ≤ ηl ≤ 1 is the length ratio.

IV. SIMULATION RESULTS

The performance of TOA estimation is evaluated by sim-

ulations using the IEEE 802.15.4a channel model CM1 -

indoor residential LOS [12]. The channel impulse responses

are truncated to 90 ns to avoid IFI. One-hundred channel

realizations are generated, and we randomly choose one in

each Monte Carlo run. To speed up the simulation, we generate

the output of the cluster averaging process directly. Ec/No

defines the cluster energy to noise variance ratio. The number

of clusters Nc is 65. Further, we randomly select the drift ratio

∆ among {−64.8 ppm, −43.2 ppm, −21.6 ppm, 0 ppm, 21.6
ppm, 43.2 ppm, 64.8 ppm} in each run. The frame period

Tf is 100 ns. The stroboscopic sampling period Tsam is 9
ns. The targeted resolution Tb is 1 ns. Based on (2), we

obtain P = 11, m = 9 and n = 1. The maximum M is

17 according to (3). Therefore, the processing gain of the

cluster averaging process is M − 2 = 15, or approximately

11 dB. The total processing gain is Nc(M − 2) = 975, or

approximately 30 dB. The second derivative of a Gaussian

pulse is employed as the transmitted pulse, and the pulse

width is truncated to 4 ns, which includes the main lobe and

two side lobes. Its bandwidth is approximately 500 MHz. The

pulse is also used as the impulse response of the front-end

filter at the receiver. Moreover, the timing offset τ ∈ [0, Tf)
is randomly generated in each run. The threshold ratio is

ηt ∈ {0.1, 0.2 . . . , 0.9}. The length ratio of the backward

search window is ηl ∈ {0.1, 0.3, 0.5}, which leads to

Lw ∈ {10 ns, 30 ns, 50 ns}.

We first evaluate the performance of TOA estimation us-

ing the peak selection method. The root mean square error

(RMSE) of τ̂p vs. Ec/No is illustrated in Fig. 5. There are

large performance gaps between the cases with drift calibration

(solid lines) and the cases without drift calibration (dashed

lines). The drift causes serious problems to TOA estimation

as indicated by the high error floor for the curves without

calibration. (10) and (12) have almost the same performance.

The Nyquist sampling system, where m = 1 and n = 0, is

used as a reference. No matter how large m, the RMSE of

TOA estimation with drift calibration always converges to the

same error floor. Nyquist sampling gains about 10 dB over

stroboscopic sampling (m = 9) due to the sampling gain m.

For both systems, we also show the performance of the ideal

case without any drift. They show similar error floors as the

ones with drift calibration, which proves that the drift is not

the reason for the error floor. It is probably due to the fact we
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Fig. 5. RMSE of TOA estimation by peak selection.

employ a signal with a bandwidth of 500 MHz, which may

not be enough to resolve fine multipaths. Since there is inter-

pulse interference (IPI), the peak selection method always

chooses the strongest resolvable signal component instead of

the strongest single path, which causes a high error floor. We

may improve the performance of the peak selection method

by employing a signal with a larger bandwidth.

We also investigate the performance of TOA estimation by

leading edge detection as shown in Fig. 6, which achieves

much better accuracies than the peak selection method. Fig. 6

illustrates the best performance of TOA estimation for dif-

ferent combinations of thresholds and search windows. The

results without drift calibration (dashed lines) are much worse

than the ones with drift calibration (solid lines). The drift

calibration dramatically reduces the TOA estimation error due

to the drift. Nyquist sampling is still used as a reference

and performs the best. There are small error floor differences

between the cases with drift calibration and the ideal cases

without any drift. The best combination of the threshold

and the search window among all the tested combinations is

ηt = 0.2 and Lw = 30 ns. However, the error floors still

remain. In order to improve the performance of the leading

edge detection, we need to analysis the stochastic properties

of y (y′) to set an optimal threshold, and obtain some prior

knowledge about the multipath channel to make a proper

backward search window.

V. CONCLUSIONS

In this paper, we have applied stroboscopic sampling for

an IR-UWB system to achieve accurate TOA estimation with

a low sampling rate. Due to the long preamble required by

stroboscopic sampling, the clock drift is one of the main error

sources in TOA estimation. Hence, we include the drift into

our system model and obtain a maximum-likelihood estima-

tion. Further, we carry out the peak selection and the leading

edge detection to estimation the TOA using the averaged data

samples corrected for the drift. Simulation results confirm that

the drift calibration dramatically reduces the TOA estimation
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Fig. 6. RMSE of TOA estimation by leading edge detection.

errors due to the drift, and stroboscopic sampling can achieve

the same estimation resolution as Nyquist sampling. We have

proposed a practical low sampling rate solution for TOA

estimation using UWB signals.
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