
Design of a Practical Scheme for Ultra Wideband
Communication

Yiyin Wang, Rene van Leuken, Alle-Jan van der Veen
 Circuit & Systems, Department of Electrical Engineering

Delft University of Technology, the Netherlands

Abstract—In the design of a packet-oriented impulse-radio
UWB communication system, the main challenge at the
receiver is to have a fast synchronization to the coded pulses,
along with a detection of the message. We consider schemes
that are straightforward to implement in practical systems and
propose two methods to realize the synchronization
algorithms: a serial and a parallel method. The algorithms for
synchronization and demodulation are implemented in a
receiver prototype based on an FPGA.

I. INTRODUCTION
The overlay on existing frequency allocations, along with

promises of high data rates, low cost and low complexity,
makes ultra-wideband (UWB) an attractive technology for
wireless communication. A practical UWB communication
scheme is given by the delay-hopped transmitted-reference
communication system (DHTR system) proposed by Hoctor
and Tomlinson [1-3]. It is based on the transmission of pairs
of pulses whose correlation carries the information: this is
unchanged after convolution by the propagation channel
since both pulses experience the same distortion. For
synchronization and detection, the individual channel
coefficients do not have to be estimated, which makes this a
much more attractive scheme than some of the proposed rake
transceivers.

Our aim in this paper is to consider a practical
implementation of the digital parts of the DHTR system on
an FPGA prototype board. We propose two hardware
architectures for detection and synchronization: a serial and a
parallel architecture. We will show the synthesis results for
the serial architecture: this gives an indication on how fast
the transceiver can be and how many resources it employs.

This research is part of the AIRLINK project [4] where
other work packages consider the antenna design, analog
electronics, and communication/networking layers. In the
design, the relatively low clock speed of an FPGA is offset
by its high degree of parallelism and I/O capabilities, so that
nonetheless an acceptable data rate can be achieved.

The paper is organized as follows. In Section II, we
introduce the system structure of the DHTR system, its
working principles, and explain how we model a simplified
version of the system. In Section III, algorithms for
synchronization and demodulation are presented. We
propose two architectures to implement the algorithms.
Section IV shows the synthesis results for the serial
architecture. Finally, conclusions are drawn in Section V.

II. DHTR SYSTEM
The delay-hopped transmitted-reference communication

system transmits pulses in pairs (as a doublet). The first
pulse is used as a reference and the second is used to carry
the information. The pulses are separated by a short time
interval, which is known by both the transmitter and the
receiver in advance. This separation changes from doublet to
doublet according to a user-specific “delay code”. The
analog part of the receiver correlates the received signal with
several time shifts using a bank of delay lines, integrates the
results, and subsequently samples the outputs for digital
synchronization and demodulation. Thus, the analog parts of
the system do not contain any time-dependent or parametric
parts, which is important since they run at maximum speed.

The transmitted messages are represented by symbols. A
symbol is composed of several doublets, where, similar to
CDMA systems, each doublet represents a chip. Fig. 1 shows
an example of the signal pattern to transmit one symbol. In
the design of our system, a symbol s consists of 8 chips c[k],
k=1,…,8, where each chip is a frame with a duration of 20ns.
In the frame, two narrow pulses g(t) form a doublet d(t). The
first pulse is a fixed reference pulse, and the second has a
polarity which depends on the symbol s and is modulated by
c[k]. The doublet can be formulated as

 () () [] ([]) 1,...,8d t g t c k s g t D k k= + ∗ ∗ − = . (1)

Here, s is the symbol value and can be -1 or 1; c[k] is the
chip value, which can also be -1 or 1, and constitutes a
user-specific code. D[k] is the user-specific delay time
sequence, with values that are a multiple of 0.5ns. In our
system, we use 5 possible values, D[k]∈{0.5ns,…,2.5ns}.

Figure 1. The structure of one transmitted symbol

A block diagram of the transceiver system is shown in
Fig. 2. The upper part of Fig. 2 indicates the transmitter and
the lower part depicts the receiver. The pulses transmitted by

This research was supported in part by the dutch Min. Econ. Affairs
/Min. Education Freeband Impulse AIRLINK project.

the antenna in the transmitter go through the wireless
channel and are received by the antenna in the receiver. The
dashed line divides the digital part from the analog part of
the transmitter and the receiver. All the digital parts are
implemented on an FPGA.

Figure 2. Schematic block diagram of the DHTR system

Twelve output pins of the FPGA are used to represent the
two pulses in a frame and their displacements. In particular,
binary pins P0, …, P5 represent the presence of a positive
pulse at displacements of 0,…,5 times 0.5ns, and similarly
N0, …, N5 represent the presence of negative pulses. If there
is a signal to transmit, then either P0 or N0 will be logically
‘1’ to represent the reference pulse, and only one of P1,…
,P5, N1,…,N5 will be ‘1’ to represent the signal pulse and its
time offset. The time shifts are implemented by analog delay
lines (D1, D2,…, D5 in the figure; in practice, we use a
slightly different scheme with only a single tapped delay
line). The delayed signals are added together and sent into
the pulse generators (one for a positive pulse and a separate
one for a negative pulse), which generate narrow pulses in
sequence. The analog pulses are added together, sent into the
amplifier and transmitted by the antenna. The pulses are
transmitted and then received by the antenna in the receiver.
The received signals go through a bank of delay lines (the
same delay periods as used in the transmitter), are correlated,
integrated over a period of 20ns, and sampled by an A/D
converter. This procedure gives a strong positive (or
negative) response in those delay branches that match the
delay of the transmitted doublet, and approximately a zero
response for other (non-matching) delays. The digital
samples are sent to the digital part of the receiver
implemented on an FPGA for synchronization and
demodulation.

To be able to test the digital part of the receiver system,
we have also implemented a simple channel emulator,
running on an FPGA, as shown in Fig. 3. It has inputs
P0,…,P5, N0,…,N5 as generated by the digital part of the
transmitter, and generates the corresponding outputs X1,…,X5
suitable for the digital part of the receiver. The implemented
emulator uses an ideal response:

}5,...,1{;5.0/][

};5.2,...,5.0{][;8,...,1
;0*][*][

∈=
∈=

≥=

jkDi
nsnskDk

AskcAkX ijijj
, (2)

where Aij is a gain parameter which depends on the
transmitted delay index i and the received delay index j, and
is related to a channel correlation coefficient. Ideally, if i=j,
Aij=A, else Aij =0 [3].

FPGA
Transimitter

X1

X2

X3 symbol

X4

X5

Receiver
FPGA

P[0]
P[1]
P[2]
P[3]
P[4]
P[5]

N[0]
N[1]
N[2]
N[3]
N[4]
N[5]

X1

X2

X3

X4

X5

12 bits

Channel emulator
FPGA

P[0]
P[1]
P[2]
P[3]
P[4]
P[5]

N[0]
N[1]
N[2]
N[3]
N[4]
N[5]

Figure 3. DHTR system emulator

III. RECEIVER SYNCHRONIZATION AND DEMODULATION

A. Detection and synchronization
At the receiver, the user code and delay time sequence

are known information and they are repeatedly used for
every symbol. The first thing to do at the receiver is to
synchronize, i.e., to detect whether we have received a valid
user signal and to find the position of the first chip of a
symbol, taking into account an unknown integer delay. The
detection is done by matching the desired user code (chip
code and delay code) with a single symbol. Every symbol is
composed of 8 chips, and since each chip corresponds to a
sample, there are 8 possible positions for the first chip. We
have to check them all to find the best match, which
corresponds to a maximum correlation with the code. If a
message was transmitted, then for each sample, one of
X1,…,X5 will have a value of +A or –A, namely the output
corresponding to the transmitted delay between the pulses of
that frame. If we are synchronized, then for the k-th chip, we
choose Xj[k] according to the user specified delay time
sequence, j=D[k]/0.5, multiply with the corresponding chip
value c[k], and sum the results over 8 chips: this gives a
matched output of r = 8As. From r, we can estimate A as 1/8
|r|. If we are not synchronized, the samples will not add
coherently, and r and the estimated A will be a small number.
Thus, at the proper synchronization position, we will get the
maximum estimated A. To synchronize, we check all 8
possible offsets, get 8 estimated values for A and find the
maximum one—max_A, and the corresponding
position—max_index.

To test whether there was a signal at all, we need to
compare the maximum estimated A to a threshold value. This
threshold value can be determined by analyzing the variance
of the value that we will obtain in the case of noise-only.
After choosing a desired false alarm level, it can be
determined with the help of statistical signal processing
theory. This would require knowledge of the noise power. In
the absence of this information, we use the average value of

the estimated A over all possible positions as the threshold. If
the maximum estimated A is α times larger than the average,
we decide that we have received a desired user signal,
otherwise it is just noise. Again, the correct α should be
determined using statistical signal processing theory. In the
text below, we use α=3.

After synchronization, we can demodulate the symbol. In
fact, the algorithm for demodulation is similar to the
algorithm for estimating A, since it requires the correlation
sum r. At the correct position, the receiver starts to
demodulate. It chooses Xj[k] according to the user specified
delay time sequence, multiplies it with the user code and
accumulates the products. After accumulation for 8 chips, the
sign of the sum is the demodulated symbol. The
demodulation is described by the following pseudo code:

r = 0;
for (k=0; k<8; k++)

j = D[k]/0.5;
 r = r + Xj[k]*c[k];

symbol = sign(r);

B. Serial synchronization architecture
Following the algorithm described above, we propose

two FPGA implementations structures for synchronization.
The first one is a serial architecture. The 8 possible offset
positions are checked in a serial way. For each offset, the
correlation calculations are the same. Since they do not
happen concurrently, the corresponding resources can be
reused which saves a lot of area. The operations are assigned
to every cycle according to the algorithm. Fig. 4 shows the
arrangement for all the cycles. In the first cycle, the first
sample read in is used as the starting point. The receiver
reads in a new sample every clock tick of 20ns. As shown in
Fig. 4, the numbers in the first row of every group is the
cycle range. The numbers in italic represent the sequence of
each batch of 8 samples. The numbers in bold represent the
sequence of 8 chips we use to compute r and estimate A.
Each batch of 8 chips starts at a different offset position, by
skipping one sample in between. The numbers in the right
column show the corresponding start position of the batch in
black referred to the batch in italic. For example, in the row
of the second batch of 8 samples in italic, the bold 0
corresponds to the italic 1. At this time we check position 1
as the start point. The stars * are the skipped samples in
order to have some offset to check different positions.

At the clock tick corresponding to a skipped sample, we
have time to (i) calculate the absolute value of the estimated
A, (ii) accumulate the value for the computation of the mean,
and (iii) compare the absolute value with max_A, which is
the record of the maximum A seen so far. If the new A is
larger than this maximum, we update max_A and max_index.
The comparison and the accumulation can be done
concurrently because they use different function resources
without any data dependency. For each batch of 8 samples,
an accumulation is done to get the estimated A and every
cycle there is an addition operation. To balance the operation
of every cycle, we can schedule the calculation of 3*avg_A,

which is used as a detection threshold, at cycle 73 as shown
Fig. 4.

1 - 8
0 1 2 3 4 5 6 7

 00 1 2 3 4 5 6 7

9 - 16
0 1 2 3 4 5 6 7 1

* 0 1 2 3 4 5 6

57-64
0 1 2 3 4 5 6 7 7
2 3 4 5 6 7 * 0

65-72
0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 *

73-80
0 1 2 3 4 5 6 7
*

(cycles)

Used for estimated A

Possible
 position

Get avg _3A
And

Compare
|max_A| with | avg _3A|

Update the max _A
And

Accumulate
absolute value of

estimated A

Get estimated A

Figure 4. Serial synchronization: arrangement of the cycles

At cycle 73, we decide whether the signal was detected. If
not, we continue another scanning round, otherwise we skip
a specific number of samples to synchronize to the computed
offset position (max_index) and start to demodulate. For
example, if the proper position is 7, then we skip 7 samples
and start demodulation at cycle 80. In the most ideal case, 74
cycles are needed for synchronization.

A disadvantage of this scheme is that synchronization
requires 9 symbol periods, even if effectively only a single
symbol period is used to detect the signal: this is not efficient
from a signal processing point of view.

C. Parallel synchronization architecture
Since FPGAs have abundant resources, an alternative

architecture is a parallel one. We can check all 8 possible
offset positions concurrently and thus reuse the same
samples for different positions. Fig. 5 shows the function
blocks for this kind of receiver. For each possible offset
position i, there is a function block Pi (i=0,…,7) that operates
on the samples starting with a corresponding offset, as
triggered by a time-shifted ‘start’ signal. Every Pi block
calculates the average estimated A (signal Ai in the figure),
demodulates the sample (signal Si), and updates the average
value of the estimated A every 160ns (8 chips or 1 symbol
period) at consecutive moments. These estimated A’s are
compared to a threshold value to detect whether there was a
signal and are also used to find the correct offset position. A
selector function block selects the corresponding signal. This
is the idea to do the synchronization using a parallel
architecture. The serial method uses fewer resources, but
takes a longer time to synchronize and is not efficient from a
signal-processing viewpoint. The parallel method uses more
resources, but is faster in synchronization: in fact it will
detect the beginning of a packet as soon as it arrives.

Figure 5. Receiver using parallel synchronization architecture

IV. RESULTS
In order to test the functionality of the DHTR system, we

encapsulate it into a VHDL soft-core of an Atmel AVR
micro-controller environment (shown in Fig. 6). The whole
environment is implemented on a Xilinx Spartan3
(xc3s1500fg676-4) FPGA. A C-program, running on the
AVR, enables communication between a user and the DHTR
system. The user inputs a message using the keyboard. The
message is transmitted to the AVR, translated into symbols
by C program and sent to the transmitter hardware. The
demodulated symbols from the receiver are collected by the
AVR. They are translated into a received message and
shown on the screen.

Figure 6. The architecture of the testing platform

The transmitter, the channel emulator and the receiver
with the serial synchronization architecture are implemented
on the FPGA as a Wishbone client. The total number of lines
of the VHDL description for this DHTR system is less than
1500. The synthesis results of the system with the serial
synchronization architecture are shown in TableⅠ. As seen
in the table, the system with the serial synchronization
employs only a few resources, as indicated by the number of

TABLE I. THE SYNTHESIS RESULTS OF THE DHTR SYSTEM WITH
THE SERIAL SYNCHRONIZATION ARCHITECTURE

 Achieved
Frequency

Equivalent
logic gates

Equivalent
system gates

Transmitter and
Channel emulator 171.1MHz 52 2080

Receiver 74.6MHz 233 9320

equivalent logic gates. As mentioned before, a disadvantage
of this scheme is its slow acquisition time: it will take at least
(c+1)*c+1 (where c is the number of chips per symbol)
times the cycle time to complete one scanning round. As c
increases, this time increases quadratically. This is not
desirable from a signal-processing viewpoint. From these
numbers in TableⅠ, we can extrapolate that the number of
resources used in the parallel receiver will be about c*233
gates. The time spent in one synchronization cycle is
c+(c-1). When c increases, the area and the acquisition time
both increase linearly. In most cases, this is a better solution.
According to the specific application, we can combine these
two architectures to make a tradeoff between the acquisition
speed and the chip area.

V. CONCLUSIONS
This paper presents the design of the digital part of a

Delay Hopped Transmitted Reference UWB communication
system. It is a mixed signal system. The transmitter
modulates the symbols according to a user specified code: a
polarity and a delay time sequence. The major challenge in
this design is to obtain synchronization at the receiver. Two
ways are proposed to do synchronization: the serial method
and the parallel method. The serial method uses fewer
resources, because it can share the calculation resources
when checking all possible positions in serial, but it takes a
relatively long time to synchronize. The parallel method uses
more resources, because it checks all possible offset
positions concurrently, but it is therefore able to achieve
synchronization within a single symbol period. The design
was targeted towards implementation on an FPGA
development boards with a Xilinx Spartan3 device. We built
a complete test environment to verify our design. The test
results proved the functionality of the design was correct.

REFERENCES
[1] R. Hoctor and H. Tomlinson, “Delay-Hopped Transmitted-Reference

RF communication”, IEEE conference on Ultra Wideband Systems
and Technologies, 21-23 May 2002, pp. 265-269

[2] N. van Stralen, A. Dentinger, K. Welles II, R. Gaus Jr., et al., “Delay
Hopped Transmitted Reference experimental results”, IEEE
conference on Ultra Wideband Systems and Technologies, 21-23
May 2002, pp. 93-98

[3] A. Trindade, Q. H. Dang and A. J. van der Veen, “Signal processing
model for a transmit-reference UWB wireless communication
system”, IEEE conference on Ultra Wideband Systems and
Technologies, 16-19 Nov. 2003, pp. 270-274

[4] The AIRLINK project, TU Delft, Netherlands:
http://www.airlink.tudelft.nl

