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Abstract—In the design of a packet-oriented impulse-radio 
UWB communication system, the main challenge at the 
receiver is to have a fast synchronization to the coded pulses, 
along with a detection of the message. We consider schemes 
that are straightforward to implement in practical systems and 
propose two methods to realize the synchronization 
algorithms: a serial and a parallel method. The algorithms for 
synchronization and demodulation are implemented in a 
receiver prototype based on an FPGA. 

I. INTRODUCTION  
The overlay on existing frequency allocations, along with 

promises of high data rates, low cost and low complexity, 
makes ultra-wideband (UWB) an attractive technology for 
wireless communication. A practical UWB communication 
scheme is given by the delay-hopped transmitted-reference 
communication system (DHTR system) proposed by Hoctor 
and Tomlinson [1-3]. It is based on the transmission of pairs 
of pulses whose correlation carries the information: this is 
unchanged after convolution by the propagation channel 
since both pulses experience the same distortion. For 
synchronization and detection, the individual channel 
coefficients do not have to be estimated, which makes this a 
much more attractive scheme than some of the proposed rake 
transceivers. 

Our aim in this paper is to consider a practical 
implementation of the digital parts of the DHTR system on 
an FPGA prototype board. We propose two hardware 
architectures for detection and synchronization: a serial and a 
parallel architecture. We will show the synthesis results for 
the serial architecture: this gives an indication on how fast 
the transceiver can be and how many resources it employs. 

This research is part of the AIRLINK project [4] where 
other work packages consider the antenna design, analog 
electronics, and communication/networking layers. In the 
design, the relatively low clock speed of an FPGA is offset 
by its high degree of parallelism and I/O capabilities, so that 
nonetheless an acceptable data rate can be achieved. 

The paper is organized as follows. In Section II, we 
introduce the system structure of the DHTR system, its 
working principles, and explain how we model a simplified 
version of the system. In Section III, algorithms for 
synchronization and demodulation are presented. We 
propose two architectures to implement the algorithms. 
Section IV shows the synthesis results for the serial 
architecture. Finally, conclusions are drawn in Section V. 

II. DHTR SYSTEM 
The delay-hopped transmitted-reference communication 

system transmits pulses in pairs (as a doublet). The first 
pulse is used as a reference and the second is used to carry 
the information. The pulses are separated by a short time 
interval, which is known by both the transmitter and the 
receiver in advance. This separation changes from doublet to 
doublet according to a user-specific “delay code”. The 
analog part of the receiver correlates the received signal with 
several time shifts using a bank of delay lines, integrates the 
results, and subsequently samples the outputs for digital 
synchronization and demodulation. Thus, the analog parts of 
the system do not contain any time-dependent or parametric 
parts, which is important since they run at maximum speed. 

The transmitted messages are represented by symbols. A 
symbol is composed of several doublets, where, similar to 
CDMA systems, each doublet represents a chip. Fig. 1 shows 
an example of the signal pattern to transmit one symbol. In 
the design of our system, a symbol s consists of 8 chips c[k], 
k=1,…,8, where each chip is a frame with a duration of 20ns. 
In the frame, two narrow pulses g(t) form a doublet d(t). The 
first pulse is a fixed reference pulse, and the second has a 
polarity which depends on the symbol s and is modulated by 
c[k]. The doublet can be formulated as 

 ( ) ( ) [ ] ( [ ]) 1,...,8d t g t c k s g t D k k= + ∗ ∗ − = . (1) 

Here, s is the symbol value and can be -1 or 1; c[k] is the 
chip value, which can also be -1 or 1, and constitutes a 
user-specific code. D[k] is the user-specific delay time 
sequence, with values that are a multiple of 0.5ns.  In our 
system, we use 5 possible values, D[k]∈{0.5ns,…,2.5ns}. 

 
Figure 1.  The structure of one transmitted symbol 

A block diagram of the transceiver system is shown in 
Fig. 2. The upper part of Fig. 2 indicates the transmitter and 
the lower part depicts the receiver. The pulses transmitted by 
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the antenna in the transmitter go through the wireless 
channel and are received by the antenna in the receiver. The 
dashed line divides the digital part from the analog part of 
the transmitter and the receiver. All the digital parts are 
implemented on an FPGA. 

 
Figure 2.  Schematic block diagram of the DHTR system 

Twelve output pins of the FPGA are used to represent the 
two pulses in a frame and their displacements. In particular, 
binary pins P0, …, P5 represent the presence of a positive 
pulse at displacements of 0,…,5 times 0.5ns, and similarly 
N0, …, N5 represent the presence of negative pulses. If there 
is a signal to transmit, then either P0 or N0 will be logically 
‘1’ to represent the reference pulse, and only one of P1,… 
,P5, N1,…,N5 will be ‘1’ to represent the signal pulse and its 
time offset. The time shifts are implemented by analog delay 
lines (D1, D2,…, D5 in the figure; in practice, we use a 
slightly different scheme with only a single tapped delay 
line). The delayed signals are added together and sent into 
the pulse generators (one for a positive pulse and a separate 
one for a negative pulse), which generate narrow pulses in 
sequence. The analog pulses are added together, sent into the 
amplifier and transmitted by the antenna. The pulses are 
transmitted and then received by the antenna in the receiver. 
The received signals go through a bank of delay lines (the 
same delay periods as used in the transmitter), are correlated, 
integrated over a period of 20ns, and sampled by an A/D 
converter. This procedure gives a strong positive (or 
negative) response in those delay branches that match the 
delay of the transmitted doublet, and approximately a zero 
response for other (non-matching) delays. The digital 
samples are sent to the digital part of the receiver 
implemented on an FPGA for synchronization and 
demodulation. 

To be able to test the digital part of the receiver system, 
we have also implemented a simple channel emulator, 
running on an FPGA, as shown in Fig. 3. It has inputs 
P0,…,P5, N0,…,N5 as generated by the digital part of the 
transmitter, and generates the corresponding outputs X1,…,X5 
suitable for the digital part of the receiver. The implemented 
emulator uses an ideal response:  
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where Aij is a gain parameter which depends on the 
transmitted delay index i and the received delay index j, and 
is related to a channel correlation coefficient. Ideally, if i=j, 
Aij=A, else Aij =0 [3].  
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Figure 3.   DHTR system emulator 

III. RECEIVER SYNCHRONIZATION AND DEMODULATION 

A. Detection and synchronization 
At the receiver, the user code and delay time sequence 

are known information and they are repeatedly used for 
every symbol. The first thing to do at the receiver is to 
synchronize, i.e., to detect whether we have received a valid 
user signal and to find the position of the first chip of a 
symbol, taking into account an unknown integer delay. The 
detection is done by matching the desired user code (chip 
code and delay code) with a single symbol. Every symbol is 
composed of 8 chips, and since each chip corresponds to a 
sample, there are 8 possible positions for the first chip. We 
have to check them all to find the best match, which 
corresponds to a maximum correlation with the code. If a 
message was transmitted, then for each sample, one of 
X1,…,X5 will have a value of +A or –A, namely the output 
corresponding to the transmitted delay between the pulses of 
that frame. If we are synchronized, then for the k-th chip, we 
choose Xj[k] according to the user specified delay time 
sequence, j=D[k]/0.5, multiply with the corresponding chip 
value c[k], and sum the results over 8 chips: this gives a 
matched output of r = 8As. From r, we can estimate A as 1/8 
|r|. If we are not synchronized, the samples will not add 
coherently, and r and the estimated A will be a small number. 
Thus, at the proper synchronization position, we will get the 
maximum estimated A. To synchronize, we check all 8 
possible offsets, get 8 estimated values for A and find the 
maximum one—max_A, and the corresponding 
position—max_index. 

To test whether there was a signal at all, we need to 
compare the maximum estimated A to a threshold value. This 
threshold value can be determined by analyzing the variance 
of the value that we will obtain in the case of noise-only. 
After choosing a desired false alarm level, it can be 
determined with the help of statistical signal processing 
theory. This would require knowledge of the noise power. In 
the absence of this information, we use the average value of 



the estimated A over all possible positions as the threshold. If 
the maximum estimated A is α times larger than the average, 
we decide that we have received a desired user signal, 
otherwise it is just noise. Again, the correct α should be 
determined using statistical signal processing theory. In the 
text below, we use α=3. 

After synchronization, we can demodulate the symbol. In 
fact, the algorithm for demodulation is similar to the 
algorithm for estimating A, since it requires the correlation 
sum r. At the correct position, the receiver starts to 
demodulate. It chooses Xj[k] according to the user specified 
delay time sequence, multiplies it with the user code and 
accumulates the products. After accumulation for 8 chips, the 
sign of the sum is the demodulated symbol. The 
demodulation is described by the following pseudo code: 

r = 0; 
for (k=0; k<8; k++) 

j = D[k]/0.5; 
   r = r + Xj[k]*c[k]; 

symbol = sign(r); 

B. Serial synchronization architecture 
Following the algorithm described above, we propose 

two FPGA implementations structures for synchronization. 
The first one is a serial architecture. The 8 possible offset 
positions are checked in a serial way. For each offset, the 
correlation calculations are the same. Since they do not 
happen concurrently, the corresponding resources can be 
reused which saves a lot of area. The operations are assigned 
to every cycle according to the algorithm. Fig. 4 shows the 
arrangement for all the cycles. In the first cycle, the first 
sample read in is used as the starting point. The receiver 
reads in a new sample every clock tick of 20ns. As shown in 
Fig. 4, the numbers in the first row of every group is the 
cycle range. The numbers in italic represent the sequence of 
each batch of 8 samples. The numbers in bold represent the 
sequence of 8 chips we use to compute r and estimate A. 
Each batch of 8 chips starts at a different offset position, by 
skipping one sample in between. The numbers in the right 
column show the corresponding start position of the batch in 
black referred to the batch in italic. For example, in the row 
of the second batch of 8 samples in italic, the bold 0 
corresponds to the italic 1. At this time we check position 1 
as the start point. The stars * are the skipped samples in 
order to have some offset to check different positions. 

At the clock tick corresponding to a skipped sample, we 
have time to (i) calculate the absolute value of the estimated 
A, (ii) accumulate the value for the computation of the mean, 
and (iii) compare the absolute value with max_A, which is 
the record of the maximum A seen so far. If the new A is 
larger than this maximum, we update max_A and max_index. 
The comparison and the accumulation can be done 
concurrently because they use different function resources 
without any data dependency. For each batch of 8 samples, 
an accumulation is done to get the estimated A and every 
cycle there is an addition operation. To balance the operation 
of every cycle, we can schedule the calculation of 3*avg_A, 

which is used as a detection threshold, at cycle 73 as shown 
Fig. 4. 
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Figure 4.  Serial synchronization: arrangement of the cycles 

At cycle 73, we decide whether the signal was detected. If 
not, we continue another scanning round, otherwise we skip 
a specific number of samples to synchronize to the computed 
offset position (max_index) and start to demodulate. For 
example, if the proper position is 7, then we skip 7 samples 
and start demodulation at cycle 80. In the most ideal case, 74 
cycles are needed for synchronization. 

A disadvantage of this scheme is that synchronization 
requires 9 symbol periods, even if effectively only a single 
symbol period is used to detect the signal: this is not efficient 
from a signal processing point of view. 

C. Parallel synchronization architecture 
Since FPGAs have abundant resources, an alternative 

architecture is a parallel one. We can check all 8 possible 
offset positions concurrently and thus reuse the same 
samples for different positions. Fig. 5 shows the function 
blocks for this kind of receiver. For each possible offset 
position i, there is a function block Pi (i=0,…,7) that operates 
on the samples starting with a corresponding offset, as 
triggered by a time-shifted ‘start’ signal. Every Pi block 
calculates the average estimated A (signal Ai in the figure), 
demodulates the sample (signal Si), and updates the average 
value of the estimated A every 160ns (8 chips or 1 symbol 
period) at consecutive moments. These estimated A’s are 
compared to a threshold value to detect whether there was a 
signal and are also used to find the correct offset position. A 
selector function block selects the corresponding signal. This 
is the idea to do the synchronization using a parallel 
architecture. The serial method uses fewer resources, but 
takes a longer time to synchronize and is not efficient from a 
signal-processing viewpoint. The parallel method uses more 
resources, but is faster in synchronization: in fact it will 
detect the beginning of a packet as soon as it arrives. 



 
Figure 5.  Receiver using parallel synchronization architecture 

IV. RESULTS 
In order to test the functionality of the DHTR system, we 

encapsulate it into a VHDL soft-core of an Atmel AVR 
micro-controller environment (shown in Fig. 6). The whole 
environment is implemented on a Xilinx Spartan3 
(xc3s1500fg676-4) FPGA. A C-program, running on the 
AVR, enables communication between a user and the DHTR 
system. The user inputs a message using the keyboard. The 
message is transmitted to the AVR, translated into symbols 
by C program and sent to the transmitter hardware. The 
demodulated symbols from the receiver are collected by the 
AVR. They are translated into a received message and 
shown on the screen. 

 
Figure 6.  The architecture of the testing platform 

The transmitter, the channel emulator and the receiver 
with the serial synchronization architecture are implemented 
on the FPGA as a Wishbone client. The total number of lines 
of the VHDL description for this DHTR system is less than 
1500. The synthesis results of the system with the serial 
synchronization architecture are shown in TableⅠ. As seen 
in the table, the system with the serial synchronization 
employs only a few resources, as indicated by the number of  

TABLE I. THE SYNTHESIS RESULTS OF THE DHTR SYSTEM WITH 
THE SERIAL SYNCHRONIZATION ARCHITECTURE 

 Achieved 
Frequency 

Equivalent 
logic gates 

Equivalent 
system gates 

Transmitter and 
Channel emulator 171.1MHz 52 2080 

Receiver 74.6MHz 233 9320 

 

equivalent logic gates. As mentioned before, a disadvantage 
of this scheme is its slow acquisition time: it will take at least 
(c+1)*c+1 (where c is the number of chips per symbol) 
times the cycle time to complete one scanning round. As c 
increases, this time increases quadratically. This is not 
desirable from a signal-processing viewpoint. From these 
numbers in TableⅠ, we can extrapolate that the number of 
resources used in the parallel receiver will be about c*233 
gates. The time spent in one synchronization cycle is 
c+(c-1). When c increases, the area and the acquisition time 
both increase linearly. In most cases, this is a better solution. 
According to the specific application, we can combine these 
two architectures to make a tradeoff between the acquisition 
speed and the chip area. 

V. CONCLUSIONS 
This paper presents the design of the digital part of a 

Delay Hopped Transmitted Reference UWB communication 
system. It is a mixed signal system. The transmitter 
modulates the symbols according to a user specified code: a 
polarity and a delay time sequence. The major challenge in 
this design is to obtain synchronization at the receiver. Two 
ways are proposed to do synchronization: the serial method 
and the parallel method. The serial method uses fewer 
resources, because it can share the calculation resources 
when checking all possible positions in serial, but it takes a 
relatively long time to synchronize. The parallel method uses 
more resources, because it checks all possible offset 
positions concurrently, but it is therefore able to achieve 
synchronization within a single symbol period. The design 
was targeted towards implementation on an FPGA 
development boards with a Xilinx Spartan3 device. We built 
a complete test environment to verify our design. The test 
results proved the functionality of the design was correct. 
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