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Abstract—The localization of autonomous underwater vehicles
(AUVs) in anchor-free environments has always been a difficult
problem due to the lack of global positioning systems and absolute
references. In general, AUVs localize themselves by dead reckoning
(DR), whereas the localization error grows without bound. To
alleviate the growth of the localization errors, we propose inter-
mittent belief propagation based dead reckoning (IBPDR) as a
cooperative localization (CL) framework. In IBPDR, AUVs use
DR to localize themselves and periodically correct DR’s deviation
with CL methods. The intermittent feature of IBPDR reduces
communication costs among AUVs by decreasing the frequency
of CL. In the IBPDR framework, we design a particle-based
underwater-adaptive belief propagation (UABP) algorithm for CL.
The UABP algorithm is naturally distributed and viable in nonlin-
ear and non-Gaussian situations. Thus, it is suitable for CL issues.
Furthermore, the UABP algorithm is robust to the accumulated
inertial measurement errors and reduces communication costs
among AUVs. Moreover, we propose a particle-based current-aided
filter to further improve the localization accuracy by comparing
AUVs’ ambient current observations with the available current
maps. Simulation results validate the proposed algorithms by
comparisons with alternative approaches in localization accuracy,
communication costs, and robustness to abnormal cases, such as
packet loss, ranging bias, and outliers.

Index Terms—Anchor-free, autonomous underwater vehicles
(AUVs), cooperative localization (CL), intermittent.

I. INTRODUCTION

AUTONOMOUS underwater vehicle (AUV) localization
has always been a difficult task [1], [2]. It is due to

the unavailability of global positioning system (GPS) signals,
the harsh channel conditions for underwater acoustics [3], the
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complex marine environments, etc. In general, AUVs localize
themselves by using inertial measurements (heading angles and
speeds) from inertial measurement units (IMUs) with dead
reckoning (DR). However, due to the accumulated errors in
the inertial measurements, the localization error of DR grows
without bound [4]. Hence, using DR alone leads to a short-time
reliability. To correct these errors, AUVs usually periodically
resurface to calibrate their positions by GPS. The problem is
that resurfacing consumes considerable amount of energy and
is impossible in some circumstances, such as navigating in
ice-covered polar regions. With the development of underwa-
ter acoustic communications and localization techniques, AUV
localization can be solved by interaction with anchors (devices
with known positions). Typical examples are the baseline sys-
tems [5]. Nevertheless, under the current situations, anchors
are only deployed in very limited regions, and the expenses of
anchor deployment and maintenance are considerably high [6].
Thus, anchor-free environments widely exist, and corresponding
AUV localization methods are in urgent demand. When AUVs
navigate in anchor-free environments, without any assistance of
anchors, cooperative localization (CL) among AUVs is a viable
option to improve the localization accuracy. It has been proved
that CL can provide higher localization accuracy compared with
noncooperative localization [7], [8]. Moreover, cooperations
among AUVs can also result in higher operational abilities and
become more and more popular in applications [9], [10]. In this
article, CL methods are used to improve the localization when
AUVs are navigating in anchor-free environments.

In previous works, many CL methods for wireless sensor net-
works (WSNs) have been designed [11]–[15]. Extended Kalman
filter is a popular one and widely applied in CL problems [16]–
[18]. Another well-known algorithm, belief propagation (BP)
[19], is also commonly used in CL. BP is a naturally distributed
message-passing algorithm. It is able to compute the marginal
posterior distributions of individual devices’ positions in a dis-
tributed fashion. Furthermore, the complexity of BP grows only
linearly to the network size. Thus, it has good scalability. Many
applications of BP in mobile devices CL have been developed
in [20]–[23]. However, these methods are not suitable for AUV
localization. In reality, AUVs use the inertial measurements to
predict their positions. The prediction can be severely affected
by the accumulated errors in the inertial measurements. In [20]–
[23], the applied position prediction models are usually with
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constant velocities, and do not consider the accumulated errors
in the prediction. Another challenge in CL is the wide existences
of the nonlinear non-Gaussian cases, which leads to the design
of BP variations [24]–[27]. Statistical linear regression and
unscented transform are used in [24] and [25], respectively, to
deal with the nonlinearities. Different types of non-Gaussian
models are applied in [26] and [27]. Particle-based BP [28],
[29] is another important variant of BP. It is able to deal with
both nonlinear and non-Gaussian cases. Moreover, it can provide
position estimates as well as the corresponding uncertainties. In
CL, reducing the communication costs is important, especially in
particle-based methods. The transmission volume of hundreds
of (maybe more) particles is much larger than that of several
parameters in parametric methods. In underwater applications,
due to energy limitations of underwater devices, reducing the
communication costs becomes more necessary. In [28] and [30],
Gaussian mixture model is used to approximate the transmitted
particles. In [31], a position vector and a covariance matrix
are used to represent the position estimate when the estimation
results need to be transmitted.

So far, most previous works on multi-AUV CL involve an-
chors, which could be well-equipped leader vehicles [32]–[34],
communication and navigation aids (CNAs) [35], [36], and other
kinds of devices with known positions. In anchor-free envi-
ronments, methods with reliable accuracy for a long-distance
navigation are required [37]. Some works on terrestrial anchor-
free scenarios have been carried out for WSNs [38]. However,
many of them only consider static scenarios, and the algorithms
cannot be directly used in underwater environments. As for
underwater anchor-free scenarios, [39] and [40] use neural
networks and terrain-aided methods to overcome the accumu-
lated inertial errors, respectively. However, the work merely
focuses on the single-AUV navigation problems. A flow-aided
method is proposed in [41], in which the involvement of flow
information leads to a better localization performance than that
of DR. Nevertheless, in the proposed methods, cooperation
is achieved only in an opportunistic manner. The anchor-free
localization methods in [42] are only applied in statical un-
derwater WSNs where the sensor nodes that need localiza-
tion are anchored to the seafloor with hemispherical position
uncertainties.

In this article, we investigate the range-based multi-AUV
CL issues in anchor-free scenarios. Our goal is to alleviate the
impacts of the accumulated inertial measurement errors and slow
down the growth of the localization error. As a result, AUVs are
able to navigate underwater for a long time with good localiza-
tion accuracy. We provide a distributed solution with an intermit-
tent CL framework named intermittent belief propagation based
dead reckoning (IBPDR). Under the IBPDR framework, we fur-
ther design the underwater-adaptive belief propagation (UABP)
CL algorithm and the particle-based current-aided filter (PCAF),
which are used, respectively, in different parts of IBPDR to
improve the localization performance. The main contributions
of this article are summarized as follows.

1) We develop an IBPDR framework, in which cooperations
among AUVs happen intermittently. In this way, the in-
teraction frequency among AUVs is decreased. Thus, the
communication costs are reduced. In addition, when no

cooperation happens, noncooperative localization meth-
ods, such as terrain-aided [40] or flow-aided [41] methods,
could be implemented. Such algorithms bring in more
useful information to assist localization. The framework
provides a natural combination of cooperative and nonco-
operative methods.

2) We propose a particle-based CL algorithm named UABP.
It has inherited the advantages of the standard BP, such
as distributed estimation, less complexity, and good scal-
ability. Meanwhile, the merits of the particle-based BP,
such as the feasibility in nonlinear non-Gaussian cases
and the ability of providing estimation uncertainties, also
exist in UABP. To make UABP suitable for our multi-AUV
CL problems, the following modifications are made. First,
instead of the direct use of the inertial measurements to
predict AUVs’ positions, we design a position prediction
process considering the accumulated errors contained in
the inertial measurements. Hence, the obtained prior posi-
tion distributions of AUVs’ are able to alleviate the effect
of the accumulated errors in the later fusion processes of
UABP. Second, we minimize the transmitted data volume
to a position vector and an uncertainty parameter. In this
way, compared with transmitting hundreds of particles,
UABP only requires the transmission of three real numbers
between two AUVs at one interaction. Third, the number
of iterations in UABP is restricted to one. The reduction
of iterations reduces the communication costs as well as
prevents the overconfident estimation problem in multi-
iteration methods [23].

3) We propose the PCAF to further improve the localization
accuracy when no cooperation among AUVs happens. The
PCAF has a position prediction process similar to that
in UABP and brings useful current information into the
framework without increasing the communication cost.

The rest of this article is organized as follows. The system
model is presented in Section II. An overview of BP-based CL
methods and the proposed methods are described in Sections III
and IV, respectively. In Section V, simulation examples are
presented and analyzed to show the advantages of the proposed
methods. The conclusions are delivered in Section VI.

II. SYSTEM MODEL

In this article, we investigate the localization of a team of
AUVs in anchor-free environments. The definition of “anchor-
free” is that AUVs cannot receive GPS signals (or something
alike) and obtain localization assistance from devices with
known absolute positions during navigations. As we all know,
the underwater environment is three-dimensional (3-D). How-
ever, when AUVs are carrying out a task, they usually navigate in
a fixed depth. In addition, current underwater devices are always
equipped with depth sensors, due to which the depth information
can be assumed known all the time. Thus, in our scenario,
a 2-D localization problem is discussed with the coordinates

of the ith AUV at the time t modeled as x
(t)
i = [α

(t)
i , β

(t)
i ]

T
.

Note that, in this article, we use the bold symbol x (or y) and
the Roman symbol x (or y) to denote variable and particle
vectors, respectively. The symbol y is used when introducing
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the pure mathematical techniques, and the symbol x is used
when discussing AUV CL issues. In addition, the time index
(represented by timestep hereafter) and the AUV index appear
in the superscript and subscript of the symbols, respectively.

In the later discussions, we assume that the deployment
positions (the start positions of the navigation) of AUVs are
exactly known to exclude the impact of the initial localiza-
tion error. We also assume AUVs are equipped with inertial
navigation sensors, such as IMUs, and acoustic modems with
ranging and communication abilities. In modern underwater
vehicles (especially AUVs), both IMUs and acoustic modems
have become common [4], even for small-sized AUVs [43].
The available measurements for localization are with two kinds:
the inertial (proprioceptive) measurements and the inter-AUV
measurements.

The inertial measurements are the speed (v̂(t)i ) and the heading

angle (θ̂(t)i ) of the ith AUV directly measured from the inertial
navigation sensors including several kinds of noises [44]. They
are the basic information for the position evolution of AUVs
between different timesteps.

For the inter-AUV measurements, we model the measured
inter-AUV distance at timestep t as

d̂
(t)
j→i = d

(t)
j→i + ν

(t)
j→i (1)

=
∥
∥
∥x

(t)
j − x

(t)
i

∥
∥
∥
2
+ ν

(t)
j→i (2)

where d̂
(t)
j→i indicates the distance between the jth and the ith

AUVs measured at the ith AUV, d(t)j→i is the true distance with

d
(t)
j→i = d

(t)
i→j , x

(t)
j denotes the coordinates of the jth AUV,

and ν
(t)
j→i is the measurement noise with variance σ2

r,j→i. The

corresponding bearing φ̂
(t)
j→i of the measured distance d̂

(t)
j→i is

modeled as

φ̂
(t)
j→i = φ

(t)
j→i + ξ

(t)
j→i (3)

whereφ(t)
j→i is the true bearing and ξ(t)j→i is the measurement noise

with variance σ2
b,j→i. In this article, we assume that different

inter-AUV distance (or bearing) measurements d̂(t)j→i and d̂
(t)
j′→i′

(or φ̂
(t)
j→i and φ̂

(t)
j′→i′ ) are independent from each other unless

j = j ′ and i = i′.

III. CL USING BP

BP [45], [46] is based on graphical models [47], which are
widely used in inference problems. A graph G = (V, E) usually
consists of a node set V and an edge set E . In AUV localization,
each node i ∈ V indicates an AUV associated with a position
variable x

(t)
i . Each edge (i, j) ∈ E denotes the existence of

the interactions between two AUVs. With all the AUV nodes
and edges, the specific structure of the graph G can repre-
sent a joint probability density function (PDF) of all position
variables.

Based on the Hammersley–Clifford theorem [48], the
joint posterior PDF of all AUVs can be represented by
the likelihood functions of the inter-AUV measurements
p(d̂

(t)
j→i, φ̂

(t)
j→i|x

(t)
j ,x

(t)
i ) and the prior position distributions

ppri(x
(t)
i ) of AUVs

p(X(t)|O(t))=
∏

(i,j)∈E
p
(

d̂
(t)
j→i, φ̂

(t)
j→i|x

(t)
j ,x

(t)
i

)∏

i∈V
ppri

(

x
(t)
i

)

(4)
whereX(t) collects allx(t)

i , i = 1, . . . , N , withN is the number

of AUVs in the AUV team, and O(t) = {d̂(t)j→i, φ̂
(t)
j→i : i, j ∈

V, (i, j) ∈ E} indicates all the noisy inter-AUV measurements.
The prior position distribution ppri(x

(t)
i ) is evolved from the

position at the last timestep

ppri

(

x
(t)
i

)

= p
(

x
(t)
i |x(t−1)

i ,Q
(t−1)
i

)

, i ∈ V (5)

with inertial measurements indicated by Q
(t−1)
i ={v̂(t−1)

i ,

θ̂
(t−1)
i : i ∈ V}. Similar position prediction methods have been

applied in [40].
To localize an AUV, an estimate x̂

(t)
i of the position variable

x
(t)
i is expected. Note that we have already obtained the joint

posterior PDF of all position variables. If we can obtain the
marginal posterior distribution of x(t)

i , the estimated value x̂
(t)
i

could be easily calculated by the Bayesian estimators, such as
the minimum mean squared error (MMSE) estimator (or the
maximum posterior estimator) [21]

x̂
(t)
i,MMSE =

∫

x
(t)
i p

(

x
(t)
i |O(t)

)

dx
(t)
i . (6)

However, the straightforward way of calculating the marginal
posterior distribution is integrating the joint posterior PDF over
all variables except x(t)

i

p
(

x
(t)
i |O(t)

)

=

∫

p
(

X(t)|O(t)
)

dX(t)\x(t)
i (7)

where X(t)\x(t)
i denotes all variables in X(t) except x

(t)
i .

Although the idea is straightforward, the total computational
amount increases exponentially as the AUV team grows in
size. Thus, we resort to BP to calculate the marginal posterior
distribution in an efficient way.

BP is an iterative message-passing algorithm that is able
to efficiently calculate the marginal posterior distribution of
each AUV’s position variable in a distributed manner. Its whole
computational amount is only proportional to the number of
AUVs. In BP, the calculated belief is an approximation of the
marginal posterior distribution.

To illustrate BP, the definitions of the message and belief go
first. The message is the information transmitted from one AUV
to another. Let us take N(i) = {j ∈ V|(i, j) ∈ E} as the set of
neighboring AUVs of the ith AUV. Then, the message from its
neighbor j ∈ N(i) to the ith AUV at the iteration l is given by
[21]

ml
j→i

(

x
(t)
i

)

∝
∫

p
(

d̂
(t)
j→i, φ̂

(t)
j→i|x

(t)
j ,x

(t)
i

)

bl−1
j

(

x
(t)
j

)

dx
(t)
j .

(8)
In AUV localization, the message ml

j→i(x
(t)
i ) denotes the rela-

tive position information about the ith AUV, taking the jth AUV
as the reference. Once all the messages from the neighbors have
been received by the ith AUV, its belief can be easily obtained
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Fig. 1. Proposed IBPDR framework: Each AUV uses DR to estimate its position in the SI and the UABP localization algorithm in the correction timesteps.

by multiplying all the incoming messages with the local prior
position distribution

bli

(

x
(t)
i

)

∝ ppri

(

x
(t)
i

) ∏

j∈N(i)

ml
j→i

(

x
(t)
i

)

. (9)

With the clarity of the message and belief, the process of
BP is very simple. During every iteration, every AUV calculates
messages and sends them to its neighbors. Meanwhile, it receives
messages from the neighbors and calculates its own belief. After
sufficient iterations, the belief of each AUV will converge to the
exactly marginal distribution (for tree-structured graphs) or an
approximation of the marginal distribution in most cases (for
graphs with loops) [22], [29].

The particle-based BP is an important variant of BP. It has
been extensively applied to localization problems over WSNs
[28], [29]. The main idea is to use groups of weighted particles to
represent the beliefs and messages. In localization, non-Gaussian
and nonlinear cases extensively exist [28] and make the standard
BP infeasible. One merit of the particle-based BP is that it is
naturally accessible to both nonlinear and non-Gaussian cases.
Moreover, the particle-based BP can provide estimates as well
as the corresponding estimation uncertainties. Due to the above
advantages of the particle-based BP, the proposed methods in
Section IV are all particle-based.

IV. UNDERWATER ANCHOR-FREE CL ALGORITHM

Due to the complexity of underwater environments, the terres-
trial localization algorithms cannot be directly used underwater.
In this article, according to the requirements of multi-AUV nav-
igation, we design particle-based algorithms that are suitable for
underwater applications. In this section, the proposed methods
are described in detail.

A. Anchor-Free Intermittent CL Framework

In anchor-free environments, without any anchor (absolute
reference), AUVs use DR for self-localization. However, the
unbounded growth of DR’s localization error leads to very
low localization accuracy for long-time navigations. Thus, a
correction of DR’s error is needed. The goal of our work is

to periodically correct DR’s error with CL among AUVs. As a
result, the error growth of DR is slowed down and AUVs are
able to stay underwater for a much longer time. Hence, we pro-
pose an intermittent CL framework named IBPDR. In IBPDR,
the proposed UABP CL algorithm is applied to localize AUVs
once in a period as a correction to DR’s deviation. The general
process of IBPDR is shown in Fig. 1.

According to Fig. 1, we first define T = nτ as the period of
IBPDR, which includes n equal-length time slots (the duration
between two consecutive timesteps) with length τ . During every
IBPDR period, AUVs use DR for self-localization in the first
(n− 1) time slots and apply UABP to cooperatively localize
themselves in the last time slot. Since no communication hap-
pens among AUVs during the first (n− 1) time slots, we name
this durationTs = (n− 1)τ as the silent interval (SI). To achieve
such a time division, we assume that AUVs are synchronized
with each other. Related works for synchronization have been
investigated in [22] and [49].

The existence of the SI is the reason that IBPDR is an
intermittent framework. An important advantage of IBPDR is
that it reduces the communication costs over the AUV team
by decreasing the communication frequency to once a period.
In WSNs applications, reducing the energy consumption is
crucial in practice, and it is more relevant underwater. Another
advantage of IBPDR is that some noncooperative methods
could be implemented during the SI, so that cooperative and
noncooperative methods can be properly combined under the
framework to jointly improve the localization accuracy of AUVs.
The designed PCAF (introduced in Section IV-D) is an example
of using noncooperative methods as a complement in the SI.
The good scalability of IBPDR provides possibilities for further
improvements.

For clarity in the following sections, we define three sets of
timesteps T C, T NC, and T

T C = kn, k ∈ N+ (10)

T NC =
⋃

k∈N

{kn+ 1, . . . , kn+ (n− 1)} (11)

T = T C
⋃

T NC. (12)
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Timestep t ∈ T C (or T NC) means that AUVs use cooperative
(or noncooperative) methods for localization in the time slot
between the timesteps t and (t+ 1).

B. Inertial Localization and DR

Inertial localization can be defined as an AUV using continu-
ously measured inertial data (the heading angles and the speeds)
to estimate its positions. The estimation principle is always
DR. With the knowledge of the previous position x

(t−1)
i =

[α
(t−1)
i , β

(t−1)
i ]

T
and the measurements from IMUs (θ̂(t−1)

i

and v̂
(t−1)
i ), an AUV can easily calculate its current position

x
(t)
i = [α

(t)
i , β

(t)
i ]

T
with DR

x
(t)
i = x

(t−1)
i + v̂

(t−1)
i τ

[

sin θ̂
(t−1)
i ; cos θ̂

(t−1)
i

]

(13)

where t and (t− 1) indicates the timesteps.
The convenience and high stability of DR make it the most

fundamental method for AUV self-localization. However, its
accumulated error grows without bound [4].

C. Underwater-Adaptive Belief Propagation

BP has been widely used in CL for WSNs. However, terrestrial
algorithms cannot be directly applied underwater. Some adap-
tations according to the underwater characteristics should be
considered. In this section, we propose a particle-based variant
of BP called UABP. Its design is based on the basic principles of
BP message-passing scheme described in Section III. The main
modifications in UABP focus on alleviating the impact of the
accumulated errors and reducing the transmitted data volume
among AUVs. Note that, during AUV navigation, only inertial
measurements with accumulated errors are available. Our work
provides a proper way to apply the obtained inertial measure-
ments to alleviate the impact of the unknown accumulated errors.
Moreover, the speed measurements can be obtained from other
navigation sensors with higher accuracy, such as the Doppler
velocity log, and the errors in the heading angle can cause major
impact on 2-D position estimation [44]. Thus, we assume that
the accumulated errors in the speed measurements are smaller
than those in the heading angle measurements.

In UABP, the calculation of the belief is the key for localiza-
tion. To calculate the belief, let us recall (9). The belief of an
AUV is a product of the prior position distribution (termed the
prior hereafter) and all the received messages. Since UABP is
particle-based, in the following paragraphs, we will introduce
how we use particles to obtain the prior and the messages and
how to perform the multiplication. Note that the particles we use
have many notations, and their meanings are listed in Table I.

1) Prior: In AUV localization algorithms, a prediction of the
position as the prior position information at the current timestep
is required. It is usually performed by DR. Due to the error
accumulation in DR, we do not use it to perform prediction. We
propose a particle-based position prediction method to generate
the prior with all the inertial measurements between two cor-
rection timesteps and the output belief in the previous correction

TABLE I
MEANING OF NOTATIONS

timestep. Thus, (5) is rewritten as

ppri

(

x
(t)
i

)

= p
(

x
(t)
i |x(t−n)

i ,Q
(t−n:t−1)
i

)

(14)

where Q
(t−n:t−1)
i includes all the inertial measurements from

the timestep (t− n) to (t− 1).
Suppose that the prior of the ith AUV in the current timestep

t ∈ T C is ppri(x
(t)
i ), represented by weighted particles P (t)

i =

{x(t)
pri,k,i, w

(t)
pri,k,i}

K

k=1
and the output belief of the ith AUV in

the previous correction timestep (t− n) ∈ T C is b(x(t−n)
i ), rep-

resented by weighted particles B(t−n)
i = {x(t−n)

b,k,i , w
(t−n)
b,k,i }

K

k=1
.

The position prediction functions are as follows:

x
(t)
pri,k,i = x

(t−n)
b,k,i + v

(t−n)
k,i τ

[

sin
(

θ
(t−n)
k,i

)

; cos
(

θ
(t−n)
k,i

)]

+ · · ·+ v
(t−1)
k,i τ

[

sin
(

θ
(t−1)
k,i

)

; cos
(

θ
(t−1)
k,i

)]

, v
(t−m)
k,i

∼ N
(

v̂
(t−m)
i , σ

(t−m)
v,i

2)

, θ
(t−m)
k,i

∼ N
(

θ̂
(t−m)
i , σ

(t−m)
θ,i

2)

, m = 1, 2, . . . , n (15)

w
(t)
pri,k,i = w

(t−n)
b,k,i (16)

where σ
(t−m)
v,i is the uncertainty of the speed measurements,

and σ
(t−m)
θ,i = σ

(t−m−1)
θ,i +Δσθ,i indicates the accumulated un-

certainty of the heading angle measurements, respectively.
The measured speed v̂

(t−m)
i and heading angle θ̂

(t−m)
i of

the ith AUV are from the measured speed set V
(t−1)
i =

{v̂(t−n)
i , . . . , v̂

(t−1)
i } and the measured heading angle set

Θ
(t−1)
i = {θ̂(t−n)

i , . . . , θ̂
(t−1)
i }, respectively.

If AUVs move along straight trajectories with constant speeds,
(15) can be simplified as

x
(t)
pri,k,i = x

(t−n)
b,k,i + vk,iT [sin(θk,i); cos(θk,i)] ,

vk,i ∼ N
(

v̄i, σ
(t−1)
v,i

2)

, θk,i ∼ N
(

θ̄i, σ
(t−1)
θ,i

2)

(17)

where v̄i and θ̄i are the means of the measured speeds in V
(t−1)
i

and heading angles in Θ
(t−1)
i , respectively. Since every particle

is treated equally in this procedure, its corresponding weight
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Fig. 2. Position prediction: Magenta dots in Zone 1 are the estimated position
distribution at the former timestep. Red crosses and green asterisks in Zone 2 and
3 are the output distributions of the proposed and traditional position prediction
methods, respectively. Zone 4 is the ideal place in which particles can provide
good estimations.

remains unchanged. In this way, we have obtained the weighted

particles P (t)
i = {x(t)

pri,k,i, w
(t)
pri,k,i}

K

k=1
of the prior.

In (15), we do not use the measured heading angles θ̂i
(t−m)

directly, but use particles sampled from a Gaussian distribution
centered by the measured heading angle with the accumulated
uncertainty. The goal of this design is trying to provide a way
to use the inertial measurements properly and alleviate the
impact of the accumulated errors in the inertial measurements.
As a result, the obtained prior can cover the true position of
the AUV even when the accumulated errors are large. This
is important for obtaining a good estimate in the later fusion
of UABP. The accumulated uncertainty σ

(t−m)
θ,i can also be

rewritten as σ(t−m)
θ,i = σ

(1)
θ,i + (t−m− 1)Δσθ,i, where σ

(1)
θ,i is

the uncertainty of the measurement at the beginning of the
navigation. In real-world applications, σ(1)

θ,i is usually small and
can be approximated to zero. It is because the inertial navigation
sensors should be calibrated before the AUV deployment and
the errors are not accumulated over time yet. The reasons we
design the accumulated uncertainty σ

(t−m)
θ,i are as follows. The

accumulated errors in the inertial measurements are the mixtures
of different kinds of errors. They contain several kinds of error
sources [44], such as the constant bias, the angle random walk,
etc. In addition, different kinds of errors have different statistic
characteristics. For example, the angular error of a constant bias
grows linearly with time, and the standard deviation of the angle
random walk grows proportionally to the square root of time.
Thus, the statistics of the accumulated errors are difficult to
describe. However, the errors will definitely grow with time as
well as the error uncertainties. By designing the accumulated
uncertainty, we can approximate the accumulation and the devi-
ation of the inertial measurement errors. Fig. 2 shows the basic
idea of the proposed particle-based position prediction.

In Fig. 2, the black and the blue lines are the real and the
DR estimated trajectories, respectively. Both lines are composed
of four parts, meaning time spans four timesteps. Note that
the trajectories are only a small part of the whole movement
path. Therefore, the beginning of the lines are not overlapped,
meaning the existence of localization error. The particles are
represented by different markers. In Fig. 2, the magenta par-
ticles in Zone 1 represent the initial position distribution. In
the traditional position prediction, such as DR, the inertial
measurements are directly used on the particles in Zone 1 to
obtain the prediction with the output particles (green asterisks)
appear in Zone 3. It can be expressed as

x
(t)
pri,k,i = x

(t−n)
b,k,i + v̂

(t−n)
i τ

[

sin
(

θ̂
(t−n)
i

)

; cos
(

θ̂
(t−n)
i

)]

+ · · ·+ v̂
(t−1)
i τ

[

sin
(

θ̂
(t−1)
i

)

; cos
(

θ̂
(t−1)
i

)]

.

(18)

Obviously, all the green particles are far from the real trajectory
(the black line). In such a situation, the estimation cannot be
good. Although the position prediction only provides the prior,
it is important that there are particles near the real position.
Therefore, we would prefer particles in Zone 4. Red particles in
Zone 2 is the output of our proposed position prediction method.
We can see that Zone 2 contains Zone 4. What we need to do is to
filter the particles in Zone 4 out of Zone 2 in the later operations.

2) Message: Recalling (8), the message is related to the
received beliefs from the transmitting AUVs and the pairwise re-
lationship between the transmitting and receiving AUVs. Since
each AUV has a prior position information of itself, one iteration
of message passing among AUVs is enough for each AUV
to obtain a position estimate. Thus, we limit the number of
iterations in UABP to one. In this way, the communication
costs are reduced with only one iteration of message passing.
Moreover, the overconfident problem is avoided [50]. Because
the messages received by an AUV from its neighbors are not
correlated with its own broadcasted belief, thus we rewrite (8)
as

m
(t)
j→i(x

(t)
i ) ∝

∫

p
(

d̂
(t)
j→i, φ̂

(t)
j→i|x

(t)
j ,x

(t)
i

)

b
(t)
j

(

x
(t)
j

)

dx
(t)
j

(19)
where the superscript is the time index instead of the iteration
index.

We first explain the composition of the transmitted belief
(b(t)j (x

(t)
j ) in (19)). Since the beliefs are in the form of particles,

we define the belief uncertainty of the jth AUV at the timestep t

as U (t)
j to indicate the uncertainty of the particles. Note that, at

the belief-broadcasting stage of UABP, new beliefs at timestep
t have not been computed yet, and U

(t)
j is defined on the

output beliefs B
(t−n)
j = {x(t−n)

b,k,j , w
(t−n)
b,k,j }

K

k=1
at the previous

cooperation timestep (t− n) ∈ T C

U
(t)
j =

K∑

k=1

w
(t−n)
b,k,j

∥
∥
∥x

(t−n)
b,k,j − x̄

∥
∥
∥

2

2
(20)
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where x̄ =
∑K

k=1 w
(t−n)
b,k,j x

(t−n)
b,k,j . When the jth AUV broadcasts

its belief, only its current position and the belief uncertainty
U

(t)
j are transmitted. However, at this stage, no position estimate

is generated by CL yet. The jth AUV transmits its predicted
position x−(t)

j calculated by DR with (13). At the receiving

AUV i, a Gaussian distribution N (x−(t)
j ,C

(t)
j ) is used to ap-

proximate the received belief, where C
(t)
j = diag{U (t)

j , U
(t)
j }.

Hence, particles are directly sampled from N (x−(t)
j ,C

(t)
j ) to

form the particle representation of the received belief. Such a
parametric approximation reduces the transmitted data volume
from a set of particles to only two parameters.

Here, we assume that the belief of the transmitting

AUV j is represented by K weighted particles B−(t)
j =

{x−(t)
b,k,j , w

−(t)
b,k,j}

K

k=1
. As for the pairwise relationship, it is

denoted by the measured inter-AUV distance d̂
(t)
j→i with cor-

responding bearing φ̂
(t)
j→i. Then, the particle representation

M
(t)
j→i = {x(t)

m,k,j→i, w
(t)
m,k,j→i}

K

k=1
of the message from the jth

AUV to the ith AUV can be calculated by

x
(t)
m,k,j→i = x−(t)

b,k,j + d
(t)
k

[

sin
(

φ
(t)
k

)

; cos
(

φ
(t)
k

)]

,

d
(t)
k ∼ N

(

d̂
(t)
j→i, σ

2
r,j→i

)

, φ
(t)
k ∼ N

(

φ̂
(t)
j→i, σ

2
b,j→i

)

(21)

w
(t)
m,k,j→i = w−(t)

b,k,j (22)

where σ2
r,j→i and σ2

b,j→i are the variances of the inter-AUV
measurements defined in Section II. Since all the particles in

B−(t)
j are equally treated, the weights remain unchanged.

3) Multiplication and Position Estimation: We now have
described the particle representations of the prior and the mes-
sage. According to (9), to calculate the belief, a multiplication
procedure should be carried out. Because the prior and the
incoming messages are all in the form of weighted particles, the
kernel density estimation (KDE) [51] is applied here to form the
particles into distributions. Assuming a particle set {yk, ωk}Kk=1

represents distribution p(y)with particlesyk and corresponding
weights ωk, the KDE of p(y) is

p̂(y) =

K∑

k=1

ωkKh(y − yk) (23)

where

Kh(y) =
1

(
√
2πh)M

exp

(

−‖y‖2

2h2

)

(24)

is the Gaussian kernel with a bandwidth h equal to the stan-
dard deviation of the ranging measurements [52] and M is the
dimension of y in (24).

Let us define the KDEs of the prior of the ith AUV as
p̂pri(x

(t)
i ) and the incoming message from the jth AUV to the ith

AUV as m̂j→i(x
(t)
i ), respectively. The product of these KDEs

Algorithm 1: UABP CL Algorithm at Timestep t.
1: AUVs i = 1 to N in parallel
2: broadcast DR position estimation x−(t)

i and belief

uncertainty U
(t)
i

3: receive x−(t)
j and U

(t)
j from neighbors, j ∈ N(i)

4: convert x−(t)
j and U

(t)
j to Gaussian distributions as

received beliefs
5: draw K i.i.d. particles from each received belief as

B−(t)
j

6: compute M
(t)
j→i according to (21) and (22) , j ∈ N(i)

7: compute P
(t)
i according to (15) and (16)

8: draw K particles from the proposal and compute
corresponding weights according to (26)

9: normalize the weights and get D(t)
i

10: compute B
(t)
i by resampling (with replacement) D(t)

i

11: compute the new position estimation x̂
(t)
i,MMSE

according to (28)
12: compute U

(t+n)
i according to (20) for the application

of UABP at timestep (t+ n) ∈ T C

13: end parallel

is as follows:

P (x
(t)
i ) = p̂pri

(

x
(t)
i

) ∏

j∈N(i)

m̂j→i

(

x
(t)
i

)

. (25)

To estimate the belief, we need to draw particles from (25).
Since each KDE of a message or the prior is a weighted summa-
tion of K Gaussian distributions, the closed form of the product
of KDEs in (25) is difficult to obtain. Thus, the direct sampling
of (25) is usually infeasible. In this way, importance sampling

[53] becomes a solution. We first draw K particles {x(t)
p,k,i}

K

k=1
from a proposal distribution (termed the proposal hereafter) q(·)
and then weight each particle by

w
(t)
p,k,i ∝

P
(

x
(t)
p,k,i

)

q
(

x
(t)
p,k,i

) . (26)

After normalization, the particle set D(t)
i = {x(t)

p,k,i, w
(t)
p,k,i}

K

k=1
could be the representation of the ith AUV’s belief. Usually, a
resample operation is needed to deal with the sample depletion
[54], which is a common problem in particle-based methods.
To perform resampling, we independently draw K particles
(with replacement) from D

(t)
i with the selected probability

of each particle in D
(t)
i equals to its corresponding weight.

As a result, we obtain K equally weighted particles B
(t)
i =

{x(t)
b,k,i, w

(t)
b,k,i}

K

k=1
as the output belief of the ith AUV.

In this method, the choice of the proposal is very important.
In general, the whole multiplication process can be viewed as
resampling from the proposal. Since the prior and the messages
all indicate the position information about the ith AUV based
on the inertial and inter-AUV measurements, the overlapping
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region of them should be near the true position of the ith AUV.
During the multiplication, the particles in this region (see Zone
4 in Fig. 2) are more likely to obtain high weights when the
weights are calculated according to (26). After normalization
and resample operations, these particles will become dominant
in the particle set. In this way, with most particles near the true
position, a good estimate with (28) is easy to obtain. In UABP,
we choose the prior to be the proposal. Then, the corresponding

weights of particles {x(t)
p,k,i}

K

k=1
can be calculated by

w
(t)
p,k,i ∝

∏

j∈N(i)

m̂j→i

(

x
(t)
p,k,i

)

. (27)

We have now obtained the belief of the ith AUV using UABP.
Since the belief is an approximation of the marginal posterior
distribution of the position variable x

(t)
i , the estimated position

x̂
(t)
i can be easily achieved by the MMSE estimator

x̂
(t)
i,MMSE =

K∑

k=1

w
(t)
b,k,ix

(t)
b,k,i. (28)

The proposed UABP localization algorithm is shown in
Algorithm 1

D. Improvements in SI

The basic rule in the SI is that no communication happens
among AUVs. Without cooperation, AUVs use only DR to
update their positions. In this way, performance degradation
is inevitable. In such circumstance, the design of noncoop-
erative methods with extra useful information may improve
the localization accuracy in the SI and, in turn, the IBPDR
framework. However, such information or methods are not easy
to acquire because of the very demanding underwater environ-
ment. First, the anchor-free scenarios commonly exist in the
mid-depth ocean where AUVs hardly see anything but seawater.
Some useful algorithms, such as SLAM [4], are not suitable.
Second, anchor-free is an extremely harsh restriction that any
involvement of device with known position will violate the
assumptions. Thus, expectations of obtaining useful information
from CNAs or using methods like opportunistic localization
are not achievable. In this case, obtaining assistance from the
ambient environments appears to be a viable option. Since the
current exists throughout the ocean, we propose a current-aided
localization algorithm that is adaptive in the SI.

Ocean general circulation models (OGCMs) [55] are a branch
of the general circulation models to simulate the oceanic physical
processes. These models have been developing fast and now can
forecast the ocean current for several days with high resolution.
Our current-aided localization algorithm fuses the measured
current velocities with the predicted current map provided by
OGCMs. The local current velocities can be measured by an
acoustic Doppler current profiler, which is recently becoming
standard for AUVs. The current map is generated by a certain
kind of OGCM and preloaded on AUVs before deployment.
The proposed method is named PCAF and composed of three
steps: the position prediction, the map checking, and the weights
update.

Algorithm 2: PCAF for AUV at Timestep t.
1: position prediction according to (29) and (30) and

obtain P (t)

2: map checking according to (33) and obtain the
“measured” position

3: update the weights of all particles in P (t) according to
(34)

4: normalize the updated weights
5: resample (with replacement) the weighted particles to

obtain the output belief B(t)

6: compute the new position estimation x̂
(t)
i,MMSE

according to (28)

The position prediction operation is similar to that in UABP.
In both UABP and PCAF, we use a set of weighted parti-
cles to represent the position distribution of an AUV. Thus,
we still use the term belief to name the output particles of
PCAF. Since each AUV navigates individually in the SI, we
only consider a single-AUV self-localization problem in this
section. Hence, the AUV index in the subscript is omitted.
Suppose that the output belief from UABP at timestep (t− 1)

is B(t−1) = {x(t−1)
b,k , w

(t−1)
b,k }

K

k=1
and the result of position pre-

diction is P (t) = {x(t)
pri,k, w

(t)
pri,k}

K

k=1
. The position prediction

equations are as follows:

x
(t)
pri,k = x

(t−1)
b,k + vkτ [sin(θk); cos(θk)] ,

vk ∼ N
(

v̂(t−1), σ(t−1)
v

2
)

, θk ∼ N
(

θ̂(t−1), σ
(t−1)
θ

2)

(29)

w
(t)
pri,k = w

(t−1)
b,k (30)

where the definitions of v̂(t−1), θ̂(t−1), σ(t−1)
v , and σ

(t−1)
θ are the

same as those in (15).
In the map checking, we compare the measured current ve-

locities with the current map and convert the measurements into
position information. We first define the map function as

v(t)
c,map = Φ(x(t)

c,map, t) + ζ(t)
c,map (31)

where v
(t)
c,map is the current velocity obtained from the map, Φ

and x
(t)
c,map denote the current map and corresponding coordi-

nates, respectively, and ζ(t)
c,map indicates the prediction error of

the map. Since the current velocities can be directly measured
by sensors, we model the velocity observation as

v̂(t)
c = v(t)

c + δ(t)c (32)

wherev(t)
c is the real current velocity andδ(t)

c is the measurement
noise. Our goal in map checking is to transform the current
observation into position information. Thus, the “measured”
position is given as

x̂(t)
c = arg min

x∈D(t)

∥
∥
∥v̂(t)

c − v(t)
c,map

∥
∥
∥
2

(33)
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Algorithm 3: IBPDR Framework.
1: AUVs i = 1 to N in parallel
2: initialize the position variable x

(1)
i with coordinates of

the known starting position
3: initialize the belief uncertainty U

(n)
i = 1

4: end parallel
5: for t = 2 to T ime do { time index}
6: AUVs i to N in parallel
7: estimate current position x−(t)

i with DR according
to (13)

8: if t ∈ T C then
9: correction operation by UABP with

x̂
(t)
i = x̂

(t)
i,MMSE: see Algorithm 1

10: else
11: no operation with x̂

(t)
i = x−(t)

i (or PCAF with

x̂
(t)
i = x̂

(t)
i,MMSE: see Algorithm 2)

12: end if
13: end parallel
14: end for

in which D(t) is the local ambient region of the AUV, which is
only a small part of the current map. Hence, no ambiguity of
v
(t)
c,map would appear.
After obtaining the “measured” position information, we up-

date the weights of all particles in P (t) by

w
(t)
b,k ∝ w

(t)
pri,kexp

⎧

⎪⎨

⎪⎩

−

∥
∥
∥x

(t)
pri,k − x̂(t)

c

∥
∥
∥

2

2

2Rmap

⎫

⎪⎬

⎪⎭

(34)

where Rmap indicates the resolution of the current map. Then,
the weighted particles will go through the same normalization
and resample operation, and the output belief at the timestep t

is obtained as B(t) = {x(t)
b,k, w

(t)
b,k}

K

k=1
. The procedure of PCAF

is stated in Algorithm 2.
Now that we have introduced all the proposed methods, an

overview of the proposed IBPDR framework is described in
Algorithm 3.

E. Discussion

In this section, we deliver some guidances to illustrate how the
proposed methods can be employed in real-world applications.

1) Since the proposed methods are based on the cooperation
among AUVs, at least two underwater vehicles with iner-
tial sensors, ranging, and communication equipments are
required to adopt the methods.

2) The proposed methods focus on alleviating the impact
of the accumulated inertial measurement errors. They
should be applied after a period of navigation when the
accumulated errors are relatively large, not from the be-
ginning of the navigation. Since DR is able to provide
high-accuracy position estimates in a short time, it is a
suitable substitution for localization at the beginning.

Fig. 3. Anchor-free scenarios: Four AUVs navigate in a plane without anchors.

3) The choices of the IBPDR period T and the angle un-
certainty increment Δσθ,i are empirical and depend on
the growth of the accumulated inertial measurement er-
rors. With a low error growth (high-quality IMUs), the
frequency of CL could be low. It indicates a relatively
large T . On the other hand, Δσθ,i controls the growth of
the accumulated uncertainty. When Δσθ,i is too small,
Zone 2 cannot guarantee to cover the real position and ef-
fectively alleviate the impact of large accumulated errors.
When Δσθ,i is large enough, Zone 2 can guarantee the
coverage of the real position. Meanwhile, the distances
among particles in Zone 2 will be large and the localiza-
tion accuracy of the methods will degrade. Furthermore,
the generation of the message in (21) requires the prior
knowledge of the inter-AUV measurement uncertainties.
When it is unknown, the obtained measurements can be
used directly.

4) The current is not the only option that can be applied to
assist localization in the SI. As a matter of fact, factors
such as the geomagnetism, the gravity, the characteristics
of seawater, etc., all can play the same role in the SI as long
as the corresponding map is available. The qualities of
the maps severely influence the localization accuracy and
should be the key to determine which reference is chosen.
When the maps are unavailable or with poor qualities, DR
is still a choice in the SI.

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed algorithms by several
numerical simulations. We consider a group of four AUVs navi-
gating in 2-D planes, and each AUV carries all the necessary sen-
sors and equipments for CL. Two typical scenarios, anchor-free
and anchor-involved, are employed in the simulations. Although
we focus on the anchor-free localization problems, we still would
like to use the anchor-involved scenarios as counterparts to verify
that our proposed methods can outperform others in not only
anchor-free scenarios but also anchor-involved scenarios. Figs. 3
and 4 show the scenarios. In Fig. 3, a 400× 400-m2 anchor-free
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Fig. 4. Anchor-involved scenarios: Three AUVs navigate in a plane with two
anchors.

plane is used. Lawn-mowing trajectories are designed for the
AUVs. They are the typical paths for AUVs to scan a region in
real applications. In addition, the trajectories contain several
sharp turnings and may cause serious errors in the inertial
measurements. As for the anchor-involved scenario, Fig. 4 shows
a popular device deployment for CL including two anchors and
three AUVs. It is applied in many relative works, such as in [21]
and [25], to validate the designed BP-type algorithms. In both
figures, cross and circle markers indicate AUVs and anchors,
respectively, and the deviation of DR is clearly exhibited.

The evaluations consist of five parts. We first compare differ-
ent choices of the proposal in UABP and find the best choice
in our scenarios. Then, localization comparisons between the
proposed algorithms and other popular ones are delivered. After
that, we demonstrate the superiorities of the proposed IBPDR
framework and PCAF method. Last but not least, some evalu-
ations in packet loss, outliers, and ranging bias cases are dis-
cussed. All the simulations are based on the IBPDR framework
with a period of 10 s (timesteps) and a total navigation time for
150 s. The first cooperation happens at the 20th second. The
AUV speeds are set to 4 m/s. The measurements are corrupted
by zero-mean Gaussian noises with variances for all AUVs,
σ2
θ = 10 or 1 (in anchor-free or anchor-involved scenarios,

respectively), σ2
v = 0.01, σ2

r = 20, and σ2
b = 25 for heading

angles, speeds, inter-AUV distances, and bearings, respectively.
Note that the chosen parameters exaggerate the impact of the
accumulated inertial measurement errors, resulting in DR’s
root-mean-square error (RMSE) reaching around 70 m after
150 s. The reasons are twofold. First, the proposed methods are
designed to alleviate the impact of the accumulated errors and
slow down DR’s deviation, especially when the errors are large.
A large deviation is more likely to testify the effectiveness of the
proposed methods. Second, when DR’s deviation is enlarged,
different performance curves can be clearly separated. Hence,
distinct comparisons among different methods or situations are
exhibited in a short time navigation. The RMSE is calculated
by averaging over all AUVs with 1000 Monte Carlo runs. The

Fig. 5. Performance comparisons of different proposals in the anchor-involved
scenario.

Fig. 6. Performance comparisons of different proposals in the anchor-free
scenario.

number of particles is 200. The choice of the particle num-
ber depends on the dimension of the problem and becomes a
tradeoff. For a certain scenario, with more particles, a higher
accuracy can be obtained while the requirements of computation
and communication also grow higher. The angle uncertainty
increment Δσθ is set to 0.5°. Note that the parameters in all
examples are set according to the above statements. If there is
any change of parameters, instructions will be stated.

A. Choice of the Proposal

As we have stated in Section IV-C, in UABP, the message mul-
tiplication can be roughly viewed as a sampling process from the
proposal. Hence, the choice of the proposal needs sophisticated
considerations. In the proposed algorithms, we select the prior
(Proposal 1) as the proposal [23]. Another popular choice is to
use the incoming message with the smallest entropy (Proposal 2)
[20]. In AUV-localization, the “smallest entropy” message in-
dicates the message transmitted from a neighboring AUV (or
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TABLE II
ERROR CONDITIONS IN THE Proposals

Fig. 7. Performance comparisons of different kinds of BP localization algo-
rithms in the anchor-involved scenario.

anchor) with the smallest position uncertainty. Figs. 5 and 6
show comparisons between these two kinds of proposals.

Both proposals provide position information of the AUV to
be localized. Their effectiveness depends on the accuracy of the
information. According to the definition of Proposal 1 (the prior)
in Section IV-C, the error accumulation in obtaining Proposal 1
includes the position estimation errors at the last timestep and the
inertial measurement errors. The error accumulation in Proposal
2 (the message) varies from different scenarios. It contains the
position estimation errors of the neighboring AUVs, the inertial
measurement errors, and the inter-AUV measurement errors in
anchor-free scenarios. In anchor-involved scenarios, it contains
the position uncertainty of the anchor and the anchor-AUV
measurement errors. The error conditions in both proposals are
exhibited in Table II.

In the anchor-involved scenario, the curves in Fig. 5 for
Proposal 1 and Proposal 2 are overlapped. It is because that,
with the help of the anchors, the errors in both proposals can
be corrected. In this way, both proposals are able to provide
accurate position information. However, in Fig. 6, more error
sources are involved in Proposal 2 in the anchor-free scenario.
Hence, the performance of Proposal 1 is better. Moreover, since
Proposal 2 is the message transmitted from a neighboring AUV,
its performance can be affected by the interaction conditions
among AUVs. In both scenarios, the performance of Proposal 2

Fig. 8. Performance comparisons of different kinds of BP localization algo-
rithms in the anchor-free scenario.

degrades when the prior knowledge of the inter-AUV measure-
ment uncertainty is unknown and the measurements are used
directly. In the meantime, since Proposal 1 is the prior obtained
from the position prediction, its performance remains almost
unchanged. Furthermore, the effectiveness of Proposal 2 can be
severely corrupted by the communication conditions. In Section
V-E, the good robustness of Proposal 1 to ill communication
conditions is verified. Due to the above advantages of Proposal
1, we choose Proposal 1 as the proposal for UABP in our later
simulations.

B. UABP Versus State of the Art

In underwater localization, the designed algorithms are ex-
pected to at least fulfill the following properties [2]: improved
accuracy, low communication costs, fast convergence, and good
scalability. In this section, we analyze the advantages of UABP
according to these properties.

1) Localization Accuracy: In Figs. 7 and 8, the comparisons
of RMSE among UABP and some state-of-the-art methods are
exhibited. In the simulations, NBP [20] and BP applied in [37]
are both particle-based methods. The choices of the proposals
in them are on the basis of a principle that the chosen proposals
give the best localization accuracy in the certain scenarios.
SPBP [25] is another variant of the standard BP based on
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Fig. 9. Reconstructed trajectories in the anchor-free scenario.

TABLE III
AVERAGE BELIEF UNCERTAINTY

the unscented transform. The main advantage of SPBP for a
distributed network is the low communication cost. From the
results, we can see that, when the performance of DR contin-
uously deteriorates, UABP always gives the best localization
accuracy. It indicates the better resistance to the accumulated
errors contained in the inertial measurements. The performance
difference in the anchor-free scenario is more obvious than that
in the anchor-involved scenario.

To better illustrate the localization performance, the recon-
structed trajectories and the average belief uncertainties (ABUs)
are presented in Fig. 9 and Table III, respectively. In Fig. 9,
each AUV’s reconstructed trajectory is obtained by averaging
all its trajectories over 1000 Monte Carlo runs. Since each
trajectory may diverge to different directions, the divergences of
the trajectories alleviate with each other when they are averaged.
This is why the localization errors in Fig. 9 are not as obvious as
those in the RMSE figures or in a single Monte Carlo run (see
Figs. 3 and 4). However, even in this case, the improvements
in localization accuracy of UABP are obvious. The blue dots
on the red curves are the output particles of the belief. Since the
MMSE position estimates are obtained by calculating the means
of these particles, the belief uncertainties indicate the estimation
uncertainties based on these belief particles. In Table III, the
ABUs are calculated by averaging the belief uncertainties over
all AUVs with 1000 Monte Carlo runs.

2) Communication Costs: In distributed networks, reducing
the communication costs is very important, and even more
underwater. Table IV gives the number of real numbers need
to be transmitted from a single AUV in a single cooperation. In

TABLE IV
NUMBER OF TRANSMITTED REAL NUMBERS FROM ONE AUV IN ONE

COOPERATION

the table, K is the number of particles used in the particle-based
methods, η is the dimension of the position variable x

(t)
i . Usu-

ally, an AUV transmits all the particles as the representation of its
belief to neighbors. The transmitted data volume is huge. SPBP
has decreased the data volume to a mean vector and a covariance
matrix, which are composed of η + η2 real numbers. However,
a primary restriction of SPBP worth mentioning is that SPBP is
limited to the Gaussian measurement model [26], which is not
in line with underwater localization issues. UABP has further
approximated the data to a mean vector and an uncertainty
parameter, which require η + 1 real numbers.

The average runtimes of the 1000 Monte Carlo runs for UABP,
BP in [37], NBP, and SPBP in the anchor-free scenario are
0.205, 0.177, 0.175, and 0.040 s, respectively. They are measured
by MATLAB with an Intel i7-7700HQ CPU. From the results,
UABP has the longest runtime. It is because generating angle
particles in (15) costs extra time. Since the energy consumption
for transmitting one bit of information can support the execution
of thousands of instructions [30], we believe that the small extra
computational costs will not affect the feasibility of UABP.

3) Convergence: The UABP is a modification of BP accord-
ing to the underwater scenarios. It inherits the basic structure and
principles of BP. Thus, the theoretical convergence of UABP
is guaranteed and remains the same as that of the standard
BP as stated in Section III, [22], and [29]. The iterations for
convergence are smaller than the length of the longest path
in the graph defined in Section III. During localization, since
each AUV has its own prior position information and only
communicates with its neighbors, only one iteration of UABP
is needed to perform localization. Comparisons of UABP with
different iterations are exhibited in Fig. 10. The tiny differences
among the curves indicate that there is no necessity to increase
the iterations. Because each iteration requires communications
among all AUVs, hence we limit the iteration number to one.

In this way, the communication costs are further reduced, and
the overconfidence problem in the multi-iteration BP applica-
tions is prevented [50]. Note that, in this article, we implement
UABP in anchor-free environments. Although UABP converges
and provides position estimates at each timestep, the localization
errors of the whole AUV navigation still grow without bound.
It is because the inertial measurement errors are accumulative
and grow unbounded. No matter what algorithm is applied, the
error growth can be bounded only with the help of the absolute
references (anchors).
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Fig. 10. Performance comparisons of UABP with different iterations.

4) Scalability: Since BP is a naturally distributed algorithm,
AUVs only need to communicate with their neighbors to perform
localization. Moreover, BP is based on the graphical models
and operates in both time and space. It is less computationally
complex (grows linearly to the network size) since the joint PDF
can be factorized over the graph. Thus, the good scalability is
one of BP’s strengths. It enables the application of BP in large
networks. The proposed UABP is a particle-based extension of
BP. It inherits the basic structure of BP. Hence, the advantages
of BP are retained in UABP. Meyer et al. [23] have testified the
scalability of the particle-based BP, making comparisons among
the particle-based BP, the sampling importance resampling par-
ticle filter, and the unscented particle filter. The results show that
the particle-based BP has better scalability that its computational
amount is linear to the network size. Moreover, in UABP, the
limitation of iteration and the reduction of communication costs
further lower the requirements among AUVs when the team
grows larger.

In summary, UABP outperforms the state-of-the-art methods
in localization accuracy and communication costs, while it inher-
its the advantages of BP in convergence and scalability aspects.

C. IBPDR Versus the Regular Framework Without the SI

In this section, we would like to validate the advantages of the
proposed IBPDR framework. An important feature of IBPDR
is the existence of the SI. If there is no SI, the framework is
referred to as the regular framework where cooperation happens
at every timestep. We now exhibit comparisons between two
frameworks.

Figs. 11 and 12 show the RMSE results. In the anchor-
involved scenario, the regular framework has a better perfor-
mance. This corresponds with the common sense that a higher
frequency of communications with anchors gives a better lo-
calization accuracy. However, in the anchor-free scenario, two
performance curves are almost overlapped.

To clearly show the differences, a quantitative analysis of the
RMSE at the correction timesteps is established in Table V.
We also draw another curve with the RMSE of IBPDR at the

Fig. 11. Performance comparisons between the IBPDR framework and the
regular framework in the anchor-involved scenario.

Fig. 12. Performance comparisons between the IBPDR framework and the
regular framework in the anchor-free scenario.

TABLE V
RMSE OF DIFFERENT FRAMEWORKS AT THE CORRECTION TIMESTEPS

correction timesteps, the yellow-dotted curve in Fig. 12. From
the results, the RMSE of the IBPDR framework at the correction
timesteps is always smaller than that of the regular framework.
By localization with anchors, the localization errors can be
easily corrected or maintained within certain accuracy. How-
ever, in anchor-free scenarios, decent corrections are difficult
to accomplish, and the error growth is unbounded. Taking the
curves in an IBPDR period (between two consecutive markers)
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Fig. 13. Current field with the maximum current speed equals to 0.6 m/s

in Fig. 12 as an example, the green curve (the regular framework)
grows mildly while the red one (the IBPDR framework) grows
very fast. It indicates that applying CL among AUVs at every
timestep indeed helps to slow down the growth of the localization
error. However, when we compare the localization accuracy
at the correction timesteps, the IBPDR framework performs
better. It is because more cooperative estimation errors are
accumulated at each cooperation, especially when the accuracy
of the inter-AUV measurements is not high in underwater fields.
High-frequency cooperations accelerate the accumulation of
the cooperative estimation errors. Moreover, according to (17),
the inertial measurement errors accumulated during the current
IBPDR period can be further alleviated by an average operation.
These are the main reasons why IBPDR has better localization
accuracy in anchor-free environments. Furthermore, the coop-
erative communication costs are reduced in IBPDR. Assuming
that the total communication costs in the regular framework for
a single IBPDR period are E, the communication costs reduce
to E/n in IBPDR (n is the number of time slots in an IBPDR
period). Thus, in both localization accuracy and communication
cost aspects, the proposed IBPDR framework is more suitable
for the anchor-free scenarios.

D. DR Versus PCAF in the SI

In this section, we will focus on the performance evaluation
about the noncooperative methods used in the SI. The main
reason for introducing the new noncooperative methods is that
we would like to bring in more useful information to assist
localization without increasing the communication costs. Fig. 13
shows the basic current field [41] that we apply in the simulation.
Its range covers the navigation region of all AUVs. In reality, the
current speed varies from 0.08 to 2.5 m/s [56]. Our choice of the
current speed is based on the current charts of the South China
Sea in [57], where the speed varies within 1.2 kn (approximately
equals to 0.6 m/s). Thus, in this simulation, the current speed
varies from 0 to 0.6 m/s.

Fig. 14. Current field affected by turbulence.

However, the predicted current map usually cannot perfectly
match the real current condition in practice. To make the sim-
ulation more convincing, we add vortices as current turbulence
in the scenario. The predicted current map is not aware of the
existence of these vortices. The vortices are modeled as [58]

Vx(x) = −Γ
β − βc

2π(x− xc)2

{

1− exp

[
(x− xc)

2

r2

]}

(35)

Vy(x) = Γ
α− αc

2π(x− xc)2

{

1− exp

[
(x− xc)

2

r2

]}

(36)

where Vx(x) (Vy(x)) is the vortex speed along the x-axis
(y-axis), x = [α, β]T is the position variable, xc = [αc, βc]

T

indicates the coordinates of the vortex center, Γ denotes the
strength of the vortex, and r represents the radius of the vortex.
Fig. 14 shows the current field affected by 50 vortices. All
the vortices are randomly distributed in the current field, with
Γ ∼ U(6, 63) and r ∼ U(15, 30). It results that the maximum
speed of each vortex varies from 0.01 to 0.2 m/s.

The different performances are demonstrated in Fig. 15, in
which comparisons between UABP with no aid and UABP aided
by PCAF with (or without) perfectly predicted current map are
elaborated. We can see that the use of current information makes
clear improvements in localization. However, the efficiency
of the algorithm depends on how useful the information can
be. In fact, the accuracy of the map has large impact on the
effectiveness of the algorithm. This is why we cannot only apply
PCAF for localization but under the IBPDR framework. In this
way, even if the prediction accuracy is bad, IBPDR will still
give a reasonable result, which is guaranteed by the cooperative
algorithms.

E. Packet Loss, Ranging Bias, and Outlier

Last but not least, we discuss the influences about packet
loss, ranging bias, and outliers. In CL, communications among
devices are indispensable. However, the underwater commu-
nication environment is very challenging. Thus, packet loss
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Fig. 15. Performance comparisons between UABP with or without assistance
by PCAF in the anchor-free scenario. UABP-1 is not aided by the current.
UABP-2 uses the current map perfectly matching the current field, and UABP-3
uses the current map not aware of the turbulence in the current field.

Fig. 16. Performance comparisons of packet-loss cases between UABP and
SPBP with different packet-loss probabilities in the anchor-free scenario.

ranging bias and outliers often happen. Fig. 16 shows the
RMSE results of packet-loss cases, where PL,max indicates
the maximum packet-loss probability. We have compared the
performance among UABP with different PL,max. In addition,
since SPBP outperforms NBP and BP in [37], we also add
SPBP in the comparison to show the superiorities of UABP.
In our simulations, the model of the successful communication
probability proposed in [59] is used

Ps(x
(t)
i ,x

(t)
j ) = exp

⎛

⎜
⎝−

∥
∥
∥x

(t)
i − x

(t)
j

∥
∥
∥

2

2R2

⎞

⎟
⎠ (37)

where Ps indicates the successful communication probability
between the ith and jth AUVs, R is a constant. Thus, the
packet-loss probability PL is defined as PL(x

(t)
i ,x

(t)
j ) = 1−

Ps(x
(t)
i ,x

(t)
j ). PL,max is the packet-loss probability when the

distance between two AUVs reaches the farthest. For example,
PL,max = 0.3 indicates that, within 1000 Monte Carlo runs,

Fig. 17. Performance comparisons between UABP and SPBP with different
ranging biases in the anchor-free scenario.

about 300 runs suffer packet loss when two AUVs reach the
farthest distance.

Fig. 16 validates UABP’s robustness in packet-loss cases.
When PL,max equals to 0.3, the accuracy loss of UABP is little.
Furthermore, whenPL,max reaches 0.7, the localization accuracy
of UABP is still higher than that of SPBP with no packet loss.

More than the missing data cases, the bias in the range
measurement is also a common factor of accuracy degradation.
A ranging bias is usually caused by asynchronization between
devices. In the simulation, we simply add ranging biases that
grow linearly over time, Bias = at+ b, with the maximum
bias Biasmax reaches around 5 (a ∼ N (0.025, 0.0012), b ∼
N (1, 0.052)) and 8 (a ∼ N (0.045, 0.0012), b ∼ N (1, 0.052))
at the end of the navigation. Fig. 17 shows the superiorities of
UABP in ranging bias cases.

Note that both packet loss and ranging bias only affect the
usabilities of the transmitted messages. In UABP, to obtain a
good position estimate, we only need to filter the particles near
the real position (see Zone 4 in Fig. 2) out of the prior by the
received messages. As long as the prior covers the true position,
useful messages give the particles near the true position high
weights (see more details in Section IV). Since the generation
of the prior is by the position prediction, it is not influenced
by the communication conditions. In such circumstances, even
with only one relatively accurate message, the accuracy of the
position estimate can be guaranteed. For example, in our sce-
narios, each AUV has three neighbors. As long as one relatively
accurate message is obtained by the AUV, its position estimate
would not degrade greatly even if the packet loss or ranging bias
happens. This is why UABP has good robustness in both cases.

At last, we discuss the outliers. In the range-based CL, outliers
usually happen in the ranging process. The outlier cases are
usually considered in large-scale wireless networks to which our
scenario can easily extend. In UABP, the range measurements
are used to generate the messages and then calculate the weights
of the particles from the proposal according to (27). When an
outlier appears and generates a wrong message m̂wrong, the dis-
tances between particles from m̂wrong and the proposal would be
large. Since we use KDE with Gaussian kernels to approximate
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the messages, the output value of message m̂wrong(x
(t)
p,k,i) in

(27) would be extremely small. Thus, by setting a threshold
of the messages’ output values in (27), the outlier cases can be
converted to the packet-loss cases in which the superiorities of
UABP have already been proved.

VI. CONCLUSION

The problem of multi-AUV CL in anchor-free environments
is investigated in this article. In anchor-free environments, with
only relative inter-AUV measurements and drifted inertial mea-
surements, the growth of localization errors cannot be bounded.
This work is devoted to slow down the growth of the localization
errors by means of cooperations among AUVs. Due to commu-
nications in cooperations and energy limitations in underwater
applications, reducing the communication costs among AUVs
is also considered.

The main contributions of this article are as follows. First,
we designed an intermittent CL framework named IBPDR.
In IBPDR, AUVs cooperatively localize themselves once a
period using the proposed UABP algorithm, and each AUV
uses the proposed PCAF algorithm for self-localization when
no cooperation happens. In this way, the communication costs
are reduced by decreasing the number of communications, and
the overall localization accuracy is improved by cooperations
among AUVs. Moreover, IBPDR provides a combination of
cooperative and noncooperative methods. Second, we proposed
a particle-based fully distributed CL method named UABP. The
position prediction process in UABP considers the accumulated
inertial measurement errors and alleviates their impact. We also
use parametric approximations to reduce the communication
costs. In addition, the use of the particles makes UABP feasible
in nonlinear and non-Gaussian scenarios. The distributed fashion
of UABP provides a good scalability when it is applied in large
networks. Finally, we design a PCAF, in which localization is
achieved by checking the measured ambient current in the pre-
dicted current map. PCAF brings in useful current information to
assist localization without increasing the communication costs.
However, the efficiency of PCAF relies on the quality of the
current map.

Simulation results demonstrate that the proposed methods
outperform the state-of-the-art methods in the localization accu-
racy, communication cost, robustness to bad cases, etc. Since the
positions are the basic information for multi-AUV applications,
based on this work, the future work can focus on accomplish-
ing certain tasks, such as tracking noncooperative targets, and
multi-AUV path planning and following.
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