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Abstract—Underwater acoustic localization is important for
supporting underwater sensor networks. However, the hostile
underwater environment makes it a very challenging mission.
In this paper, we take uncertainties in sound propagation speed
and time synchronization into account and propose a localization
method. All anchors with known positions are synchronized,
while all agents that need to perform localization are not
synchronized with the anchors. The anchors measure the time
of arrivals (ToAs) of the signals from the other anchors to
estimate the sound propagation speed first. The agents measure
the ToAs of the signals broadcast by the anchors, and combine
the ToAs measured in two consecutive intervals to estimate
the clock skews. After that the weight least squares (WLS)
algorithm is used to calculate the agents’ positions and clock
offsets. Finally, the performance of the estimators of the clock
skew, the clock offset, and the coordinates are refined via an
alternative iteration process. The performance of the proposed
estimators are evaluated through simulations.
Keywords: localization, sound propagation speed, synchroniza-
tion.

I. INTRODUCTION

As an important service for underwater sensor networks
(UWSNs), localization has been applied to numerous un-
derwater sensor network applications, such as environment
monitoring, ocean resource surveys and underwater security.
However, the underwater hostile acoustic environment poses
several challenges for localization in UWSNs. An error will be
introduced if a classical constant (sound propagation speed),
such as 1500 m/s, is used in all the periods of localization. Be-
cause the sound propagation speed may change with the time
due to the characteristics of underwater environment vary tem-
porally and spatially. Moreover, the long propagation delay
and inherent mobility of underwater nodes make underwater
clock synchronization still an issue to be solved. In addition,
the power constraints of nodes limit the lifecycle of UWSNs.
Therefore, it is necessary to propose an underwater acoustic
localization algorithm with uncertainties in sound propagation
speed and time synchronization taken into account.
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Shanghai economic and Information Commission under CXY-2014-007.

Among the typical range measurement methods, measuring
time-of-arrival (ToA) or time-difference-of-arrival (TDoA) are
the most potential approaches for underwater ranging [1].
Cheng et al. [2] proposed a silent localization schemes through
measuring TDoAs of sequentially generating packets from
anchors. The localization period of [2] is relative too long,
and a known sound propagation speed is assumed, which
will decrease the localization accuracy [3]. Kim et al. [4]
suggested to estimate the sound propagation speed by packet
exchange between anchors. The sound propagation speed is
estimated by combining the channel characteristics and a
sound propagation speed model in [5]. Moreover, Diamant
et al. [6] proposed an algorithm to jointly estimate the agent
location and the sound propagation speed. These proposed
methods require multiple packet exchanges between anchors
and agents, Thus it is not energy efficient for agents.

In order to overcome the disadvantages mentioned above, in
this paper we take energy efficiency and uncertainties in sound
propagation speed and time synchronization into consideration
and design a localization algorithm. The main idea of our
localization algorithm is as follows. The anchors broadcast
signals and measure the ToAs of the signals from the other
anchors to estimate the sound propagation speed first. The
agent measures the ToAs of the signals from the anchors, and
combines the ToAs measured in two consecutive intervals to
estimate its clock skew. After that the weight least squares
(WLS) algorithm is used to calculate the agent’s position and
clock offset. Finally, the alternative iteration process is used
to refine the performance of the estimators of the clock skew,
the clock offset, and the coordinates. Our method does not
require the agents to transmit any signal. The agents localize
themselves according to the received signals. Therefore, it is
energy-efficient for the agent.

The remaining part of this paper is organized as follows.
In Section II, we describe the scenario and the problem.
A detailed elaboration on the estimate algorithm appears in
Section III. The unbiased characteristics of our estimators
and the CRBs of the sound speed, the clock skew, the clock
offset and the agent’s position are provided in Section IV. In
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Section V, the performance of our algorithm is evaluated via
simulation. We conclude this paper in Section VI.

II. PROBLEM DESCRIPTION

We would like to locate the underwater agents with the
help of the floating anchors. A set of 𝑛 anchors with known
positions x𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]

𝑇 , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, float in the water.
We assume that 𝑧𝑖 = 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. The anchors broad-
cast signals to provide localization and clock synchronization
services for underwater agents. All the anchors synchronized
with the universal time clock (UTC) by GPS. The agents have
their own clocks and are not synchronized. The relationship
between the anchors and the 𝑖th agent is 𝑡𝑖 = 𝑎𝑖𝑡 + 𝑏𝑖,
where 𝑡𝑖 is the 𝑖th agent’s clock, and 𝑡 is the anchors’ clock,
𝑎𝑖 and 𝑏𝑖 are the clock skew and the clock offset of the
𝑖th agent, respectively. The agents perform synchronization
and localization by measuring the ToAs of the broadcast
packets of anchors. Assume that the agents equip with the
pressure sensors. Hence its depth coordinate can be obtained
by the pressure sensor. Now we focus on a single agent
x = [𝑥, 𝑦, 𝑧]𝑇 whose clock skew and clock offset are modeled
as 𝑎 and 𝑏, respectively. The parameter 𝑧 is known via pressure
sensors. The parameters which we need to estimate are the
sound propagation speed 𝑐, the clock skew 𝑎, the clock offset
𝑏, the coordinates of the agent.

Assume that all the anchors transmit the 𝑘𝑡ℎ signals with
the UTC time 𝑡0,𝑘, which satisfies 𝑡0,𝑘 = 𝑡0,𝑘−1 + 𝑇, 𝑘 =
1, 2, ⋅ ⋅ ⋅ , where 𝑇 is the time interval between two consecu-
tive signal transmission. The clock skew, the clock offset, the
sound propagation speed, the positions of anchors and agents
remain unchanged during two consecutive time intervals. The
measured arrival times of the 𝑘𝑡ℎ transmitted signals from the
anchor 𝑖 to the agent x and to the anchor 𝑗 are denoted by 𝑡𝑖,𝑘
and 𝑡𝑖𝑗,𝑘 respectively, which satisfy the following equations

𝑡𝑖𝑗,𝑘 = 𝑡0,𝑘 + 𝜏𝑖𝑗,𝑘 + 𝜀𝑖𝑗,𝑘 (1)

𝑡𝑖,𝑘 = 𝑎𝑡0,𝑘 + 𝑏+ 𝑎𝜏𝑖,𝑘 + 𝜀𝑖,𝑘 (2)

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛; 𝑗 ∕= 𝑖; 𝑘 = 1, 2, ⋅ ⋅ ⋅
where 𝜏𝑖,𝑘 is the propagation time between the anchor 𝑖
and the agent x, and 𝜏𝑖𝑗,𝑘 is the propagation time between
the anchor 𝑖 and 𝑗 . The time measurement error 𝜀𝑖,𝑘, and
𝜀𝑖𝑗,𝑘, are independent of each other and zero-mean Gaussian
random variables. Expressing the time delay with the ratio of
the distance and the sound propagation speed, (1) and (2) can
be rewritten in a compact form

t̃𝑎,𝑘 = h𝑎𝑐
−1 + 𝜺𝑎,𝑘 (3)

t̃𝑘 − (𝑎𝑡0,𝑘 + 𝑏)1 =
𝑎

𝑐
d(x) + 𝜺𝑘 (4)

where

t̃𝑎,𝑘 = [t̃𝑎1,𝑘, ⋅ ⋅ ⋅ , t̃𝑎𝑛,𝑘]𝑇
t̃𝑎𝑖,𝑘 = [𝑡𝑖1,𝑘, ⋅ ⋅ ⋅ , 𝑡𝑖(𝑖−1),𝑘, 𝑡𝑖(𝑖+1),𝑘, ⋅ ⋅ ⋅ , 𝑡𝑖𝑛,𝑘]− 𝑡0,𝑘1

𝑇

h𝑎 = [h𝑎1, ⋅ ⋅ ⋅ ,h𝑎𝑛]
𝑇

h𝑎𝑖 = [𝑑𝑖1, ⋅ ⋅ ⋅ , 𝑑𝑖(𝑖−1), 𝑑𝑖(𝑖+1), ⋅ ⋅ ⋅ , 𝑑𝑖𝑛]
𝑑𝑖𝑗(x) = ∥x𝑖 − x𝑗∥
t̃𝑘 = [𝑡1,𝑘, 𝑡2,𝑘, ⋅ ⋅ ⋅ , 𝑡𝑛,𝑘]𝑇
d(x) = [𝑑1(x), ⋅ ⋅ ⋅ , 𝑑𝑛(x)]𝑇
𝑑𝑖(x) = ∥x− x𝑖∥
𝜺𝑎,𝑘 = [𝜀12,𝑘, ⋅ ⋅ ⋅ , 𝜀1𝑛,𝑘, 𝜀21,𝑘, 𝜀23,𝑘, ⋅ ⋅ ⋅ , 𝜀2𝑛,𝑘, ⋅ ⋅ ⋅ , 𝜀𝑛(𝑛−1),𝑘]

𝑇

𝜺𝑘 = [𝜀1,𝑘, 𝜀2,𝑘, ⋅ ⋅ ⋅ , 𝜀𝑛,𝑘]𝑇

III. THE ALGORITHM

In order to reduce the complexity, we first estimate the
sound propagation speed 𝑐 and the clock skew 𝑎 of agent by
the utilization of measurement information between anchors
and the information of two consecutive signal transmission
periods. Sequentially the weighted least squares (WLS) al-
gorithm is utilized to estimate the remaining parameters.The
details are as follows.

Fig. 1: Flow diagram

A. The Estimation of sound propagation speed and Clock
Skew

The signals received by the anchors can be utilized to
estimate the sound propagation speed. The estimated of the
sound propagation speed can be broadcast to the agents in the
the next time interval. We transform (3) into the following
form

H𝑎 = t̃𝑎,𝑘𝑐− 𝑐𝜺𝑎,𝑘 (5)

As a result, the sound propagation speed can be estimated as

𝑐 = (t̃𝑇𝑎,𝑘 t̃𝑎,𝑘)
−1t̃𝑇𝑎,𝑘H𝑎 (6)



All the signals received by the agent during the two consec-
utive time intervals can be combined to estimate 𝑎. According
to (2), it is easy to deduce the following relationship

𝑡𝑖,𝑘+1 − 𝑡𝑖,𝑘 = 𝑎(𝑡0,𝑘+1 − 𝑡0,𝑘) + (𝜀𝑖,𝑘+1 − 𝜀𝑖,𝑘) (7)

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛
It can be rewritten in a compact form as

𝜷 = 𝑎𝑇1+ 𝜺𝑘+1 − 𝜺𝑘 (8)

where 1 = [1, 1, ⋅ ⋅ ⋅ , 1]𝑇 ∈ ℝ
𝑛×1, 𝜷 = [𝑡1,𝑘+1−𝑡1,𝑘, 𝑡2,𝑘+1−

𝑡2,𝑘, ⋅ ⋅ ⋅ , 𝑡𝑛,𝑘+1 − 𝑡𝑛,𝑘]
𝑇 . Thus, the clock skew 𝑎 can be

obtained through the LS method

�̂� =
1𝑇𝜷

𝑛𝑇
(9)

B. The Alternative Algorithm

The alternative algorithm is introduced in this section. We
partition the parameters into two groups: [𝑎, 𝑏]𝑇 and [𝑥, 𝑦]𝑇 .
The initial process is performed to obtain the initial estimate
of both groups. After that, during the 𝑟th iteration, we treat
one of the two group as the unknown parameters and estimate
them based on the other group’s previous estimates, and repeat
with respect to the other group until the stop condition is
satisfied.

1) The Initial Process: In this part we estimate [𝑥, 𝑦, 𝑏]𝑇

with WLS algorithm based on the estimated the clock skew �̂�
and the sound propagation speed 𝑐. However, (2) is a nonlinear
equation about the parameters which need to be estimated.
Therefore, the first step is to linearize it. We square both
sides of it and make differentiation with respective to the last
equation of (2) and rearrange this results. Finally, we get the
following linear equation:

𝜼 = A[𝑥, 𝑦, 𝑏]𝑇 + 𝝎 (10)

where A = [a1, ⋅ ⋅ ⋅ ,a𝑛−1]
𝑇 , 𝜼 = [𝜂1, ⋅ ⋅ ⋅ , 𝜂𝑛−1]

𝑇 and the
noise vector 𝝎 = [𝜔1, ⋅ ⋅ ⋅ , 𝜔𝑛−1]

𝑇 . Their elements are shown
as follows:

a𝑖 = [2(𝑥𝑛 − 𝑥𝑖), 2(𝑦𝑛 − 𝑦𝑖),
2𝑐2

(�̂�)2
(𝑡𝑖,𝑘 − 𝑡𝑛,𝑘)]

𝑇

𝜂𝑖 = (
𝑐

�̂�
𝑡𝑖,𝑘 − 𝑐𝑡0,𝑘)

2 − (
𝑐

�̂�
𝑡𝑛,𝑘 − 𝑐𝑡0,𝑘)

2 + ∥x𝑛∥2 − ∥x𝑖∥2

𝜔𝑖 = 2
𝑐

�̂�
𝑑𝑖(x)(𝜀𝑖,𝑘 − 𝜀𝑛,𝑘) +

𝑐2

(�̂�)2
(𝜀2𝑖,𝑘 − 𝜀2𝑛,𝑘)

The WLS algorithm is used here to solve (10). Denote the
weight matrix as W ∈ ℝ

(𝑛−1)×(𝑛−1), and initialize it with
𝑛 − 1 dimensions unit matrix. After an estimate of [𝑥, 𝑦] is
obtained, we update W with C−1, where C is the convariance
matrix and can be calculated through the following equation:

[C]𝑖𝑗 =

{
4𝑐2𝜎2

�̂�2 ( 𝑐
2𝜎2

�̂�2 + 3𝑐𝜎2

�̂�
𝑑𝑖(x̂) + 2(𝑑𝑖(x̂))

2) if 𝑖 = 𝑗
2𝑐2𝜎2

�̂�2 (2𝑑𝑖(x̂)𝑑𝑗(x̂) +
4𝑐2𝜎2

�̂�2 ) if 𝑖 ∕= 𝑗
(11)

The convariance matrix is dependent on the distances be-
tween the anchors and the agent. Therefore, every time we
get the estimate of 𝑥, 𝑦, the weigh matrix is updated. The
estimators of 𝑥 and 𝑦 are refined until the results converge.
By applying the WLS to (10), we can obtain the estimator

[�̂�, 𝑦, �̂�]𝑇 = (A𝑇W−1A)−1A𝑇W−1𝜼 (12)

2) The Alternative Iteration: In order to refine the estima-
tion accuracy of them, based on the value of �̂�, 𝑦, we estimate
[𝑎, 𝑏]𝑇 again with the LS algorithm according to (4). The
estimate of [𝑥, 𝑦]𝑇 is refined with the WLS based on [�̂�, �̂�]𝑇 .
The alternative iteration continues until the stop condition is
satisfied. During the 𝑟th iteration, substitute �̂�(𝑟−1), 𝑦(𝑟−1) into
(4) and rearrange it, we can deduce the linear equation of 𝑎, 𝑏,
which can be stated as

t̃𝑘 = [𝑡0,𝑘1+
1

𝑐
d(x̂(𝑟)),1][𝑎, 𝑏]𝑇 + 𝜺𝑘 (13)

Let Q(x̂) ≜ [𝑡0,𝑘1+ 1
𝑐d(x̂),1]. The estimator of [𝑎, 𝑏]𝑇 can

be expressed as

[�̂�(𝑟), �̂�(𝑟)]𝑇 = (Q𝑇 (x̂(𝑟−1))Q(x̂(𝑟−1)))−1Q𝑇 (x̂(𝑟−1))t̃𝑘 (14)

Substitute [�̂�(𝑟), �̂�(𝑟)]𝑇 into (10) and rearrange it. We have

𝝁 = B[𝑥, 𝑦]𝑇 + 𝝎 (15)

where B = [b1, ⋅ ⋅ ⋅ ,b𝑛−1]
𝑇 , 𝝁 = [𝜇1, ⋅ ⋅ ⋅ , 𝜇𝑛−1]

𝑇 . b𝑖 =
[2(𝑥𝑛−𝑥𝑖), 2(𝑦𝑛−𝑦𝑖)]𝑇 and 𝜇𝑖 = ( 𝑐

�̂�(𝑟) 𝑡𝑖,𝑘−𝑐𝑡0,𝑘)2− ( 𝑐

�̂�(𝑟) 𝑡𝑛,𝑘−
𝑐𝑡0,𝑘)

2 + ∥x𝑛∥2 − ∥x𝑖∥2 − 2𝑐2

(�̂�(𝑟))2
(𝑡𝑖,𝑘 − 𝑡𝑛,𝑘)�̂�

(𝑟). The WLS
estimator is given by

[�̂�(𝑟), 𝑦(𝑟)]𝑇 = (B𝑇W−1B)−1B𝑇W−1𝝁 (16)

where 𝑊 = 𝐶−1. We decide whether to stop according
to the difference between [�̂�(𝑟), �̂�(𝑟), �̂�(𝑟), 𝑦(𝑟)] and
[�̂�(𝑟−1), �̂�(𝑟−1), �̂�(𝑟−1), 𝑦(𝑟−1)].

IV. CRAMÉR-RAO BOUND

The CRB states that the variance of any unbiased estimator is
at least as high as the inverse of the Fisher information. In order
to evaluate the performance of of our proposed estimators, we
compare them with the corresponding CRBs. We first show that
our estimator are unbiased estimators, then calculate the CRB of
the sound propagation speed 𝑐, the clock skew 𝑎, the clock offset
𝑏, and the 𝑥 , 𝑦 coordinates of the agent. As the estimation of the
sound propagation speed 𝑐 is based on the informations obtained
by anchors, while the estimation of the other parameters 𝑎, 𝑏, 𝑥, 𝑦,,
is based on the informations obtained by the agent, we analyze the
CRB of them separately. Before that the unbiased characteristic of
our estimator is shown first. According to the estimator (6) of sound
propagation speed 𝑐, the expectation of 𝑐 can be calculated as

𝐸[𝑐] = 𝐸[(t̃𝑇𝑎,𝑘 t̃𝑎,𝑘)
−1t̃𝑇𝑎,𝑘H𝑎]

= 𝑐− 𝑐[(t̃𝑇𝑎,𝑘 t̃𝑎,𝑘)−1t̃𝑇𝑎,𝑘]𝐸[𝜺𝑎,𝑘] = 𝑐 (17)

We have estimated 𝑎 and 𝑏 twice: the first time we estimated 𝑎
alone, and the second time we estimated them together. Therefore



both estimators are needed to be check. First, Substitute (8) into (9)
and calculate the expectation. We have

𝐸[�̂�] = 𝐸[
1𝑇𝜷

𝑛𝑇
]

= 𝑎+
1

𝑛𝑇

𝑛∑
𝑖=1

𝐸(𝜀𝑖,𝑘+1 − 𝜀𝑖,𝑘) = 𝑎

Combining (13) and (14), and taking expectation with respect to
[�̂�, �̂�]𝑇 , we have

𝐸{[𝑎, 𝑏]𝑇 } = 𝐸{(Q𝑇 (x̂)Q(x̂))−1Q𝑇 (x̂)(Q(x̂)[𝑎, 𝑏]𝑇 + 𝜺𝑘)}
= [𝑎, 𝑏]𝑇

Similarly, by substituting (10) into (12), we can calculate the
expectation of [𝑥, 𝑦, 𝑏]𝑇 as

𝐸{[�̂�, 𝑦, �̂�]𝑇 } = 𝐸{(A𝑇W−1A)−1A𝑇W−1(𝐴[𝑥, 𝑦, 𝑏]𝑇 + 𝝎)}
= [𝑥, 𝑦, 𝑏]𝑇 + (A𝑇W−1A)−1A𝑇W−1𝐸(𝝎)

= [𝑥, 𝑦, 𝑏]𝑇

The estimator of [𝑥, 𝑦]𝑇 is also an unbiased estimator, as we show
it as follows:

𝐸{[�̂�(𝑟), 𝑦(𝑟)] = 𝐸{(B𝑇W−1B)−1B𝑇W−1(B[𝑥, 𝑦]𝑇 + 𝝎)}}
= [𝑥, 𝑦]𝑇 + 𝐸{(B𝑇W−1B)−1B𝑇W−1𝝎}
= [𝑥, 𝑦]𝑇

Therefore, the estimator(6), (9), (12), (14) and (16) are unbiased
estimators. Now we analyze the unbiased CRB of all the parameters.
According to (1), we denote 𝑇𝑎,𝑘 = t̃𝑎,𝑘 + 𝑡

(𝑘)
0 1𝑇 ∈ ℝ

𝑛(𝑛−1)×1,
then the time measurement of the anchors can be modeled as

𝑇𝑎,𝑘 ∼ 𝒩 (𝐹𝑎,𝑘(𝑐), 𝜎
2) (18)

where 𝐹𝑎,𝑘(𝑐) = 𝑡0,𝑘1
𝑇 + H𝑎𝑐

−1 ∈ ℝ
𝑛(𝑛−1)×1. The probability

density function (PDF) of 𝑇𝑎,𝑘 is

𝑝(t̃(𝑘)𝑎 ; 𝑐) =

1

(2𝜋𝜎2)𝑛(𝑛−1)/2
exp{− 1

2𝜎2

𝑛∑
𝑖=1

𝑛∑
𝑗=1,𝑗 ∕=𝑖

(𝑡𝑖𝑗,𝑘 − 𝑡0,𝑘 − 𝑑𝑖𝑗,𝑘/𝑐)2}

Then the CRB of 𝑐 can be expressed as

CRB(𝑐) = −𝐸−1[
∂2 ln 𝑝(𝑇𝑎,𝑘; 𝑐)

∂𝑐2
]

=
𝜎2𝑐4∑𝑛

𝑖=1

∑𝑛
𝑗=1,𝑗 ∕=𝑖 𝑑

2
𝑖𝑗

(19)

Similarly, we can described the time measurement of the agent in
the following form

t̃𝑘 ∼ 𝒩 (𝐹𝑘(𝜽), 𝜎
2I𝑛) (20)

where

𝐹 (𝑘)(𝜽) = [𝑓1,𝑘(𝜽), , ⋅ ⋅ ⋅ , 𝑓𝑛,𝑘(𝜽)]
𝑇 ∈ ℝ

𝑛×1

𝑓
(𝑘)
𝑖 = 𝑎𝑡0,𝑘 + 𝑏+ 𝑎𝜏𝑖

𝜽 = [𝜃1, 𝜃2, 𝜃3, 𝜃4]
𝑇 ≜ [𝑎, 𝑏, 𝑥, 𝑦]𝑇

The corresponding Fisher information matrix can be stated as

[M(𝜽)]𝑖𝑗 =
1

𝜎2
[
∂𝐹𝑘(𝜽)

∂𝜃𝑖
]𝑇 [
∂𝐹𝑘(𝜽)

∂𝜃𝑗
] (21)

where

∂𝐹𝑘(𝜽)

∂𝜃𝑖
= [
∂𝑓1,𝑘
∂𝜃𝑖

, ⋅ ⋅ ⋅ , ∂𝑓𝑛,𝑘

∂𝜃𝑖
]𝑇

∂𝑓𝑖,𝑘
∂𝜃1

= 𝑡0,𝑘 +
𝑑𝑖(x)

𝑐
∂𝑓𝑖,𝑘
∂𝜃2

= 1

∂𝑓𝑖,𝑘
∂𝜃4

=
𝑎(𝑥− 𝑥𝑖)
𝑐𝑑𝑖(x)

∂𝑓𝑖,𝑘
∂𝜃5

=
𝑎(𝑦 − 𝑦𝑖)
𝑐𝑑𝑖(x)

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛
and the CRB of 𝜽 can be expressed as

Var(𝜃𝑖) ≥= [M−1(𝜽)]𝑖𝑖 (22)

V. SIMULATION

The performance of our algorithm is evaluated through numerical
simulations. There are 16 anchors floating on the water. They
broadcast signals every 𝑇 = 0.1𝑠, and measure the arrival times of
the other anchors’ signals to estimate the sound propagation speed.
The agent receives all the signals, measures their arrival times, and
estimates the other parameters.

Fig. 2 shows the square root of CRB and the root mean square
error (RMSE) of the sound propagation speed. As it is shown the
RMSE is almost equal to the CRB along the noise axis. Therefore,
our sound propagation speed estimator performs well.
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Fig. 2: The RMSE and
√

CRB of sound propagation speed 𝑐.
The maximum of noise standard Deviation is 80ms

The RMSE and the
√

CRB of the parameters 𝑎, 𝑏 of agent are
shown in Fig. 3 and 4. As they show, the RMSEs are very close to√

CRB when the noise standard deviation is small enough. Although
the difference between the RMSE and

√
CRBcontinues increasing

with the increasing of noise standard deviation, the differences are
small.

It is similar to the estimators of 𝑎 and 𝑏, the RMSE of the agent’s
location is almost equal to the corresponding CRB when the noise
standard deviation is small enough as shown in Fig. 5. While the
difference also keep increasing with the increasing of noise standard
deviation.

VI. CONCLUSION

In this paper, we propose an underwater acoustic localization al-
gorithm with the consideration of uncertainties in sound propagation
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Fig. 3: The RMSE and
√

CRB of the agent’s clock skew 𝑎.
The maximum of noise standard deviation is 80ms
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Fig. 4: The RMSE and
√

CRB of the agent’s clock offset 𝑏.
The maximum of noise standard deviation is 80ms

speed and time synchronization. The anchors first broadcast signals,
then estimate the sound propagation speed via the ToAs of the signals
from the other anchors, and send the estimated sound propagation
speed to the underwater agent in the second time interval. The agent
measures the ToAs of the signals broadcast by the anchors, and
combine the ToAs measured in two consecutive intervals to estimate
the clock skews. After that the estimation of the agent positions and
the clock offsets is performed with the WLS algorithm. Finally, we
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Fig. 5: The RMSE and
√

CRB. of the agent’s location
[𝑥, 𝑦, 𝑧]𝑇 . The maximum of noise standard deviation is 80ms

perform the alternative iteration process to refine the accuracy of
𝑎, 𝑏, 𝑥, 𝑦.

Our method does not require the agents to transmit any signal,
which will prolong the life of the agents. The proposed estimator are
unbiased. The estimation of all parameters: the sound propagation
speed, the clock skew, the clock offset and the agent’s position
only takes two consecutive time intervals. Therefore the localization
period of our method is small. The simulations show that the
RMSEs of the sound propagation speed is almost equal to the
corresponding

√
CRB. While, the differences between the RMSE and

the corresponding
√

CRB of the other estimators remain increasing
along the noise standard deviation axis. But, the differences are still
relative small. Especially when the noise standard deviation is small,
such as 𝜎 < 10𝑚𝑠, the RMSE is get so close to the corresponding√

CRB.
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