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Distance Measurements
Alon Amar, Member, IEEE, Yiyin Wang, Student Member, IEEE, and Geert Leus, Senior Member, IEEE

Abstract—We consider the problem of node localization given
partial pairwise distance measurements. Current solutions first
complete the missing distances and then apply the classical mul-
tidimensional scaling (MDS) algorithm. Instead, we extend the
classical MDS to a setup where the sensor network is composed of
a fully connected group of nodes that communicate with each other
(e.g., beacons), and a group of nodes that cannot communicate
with each other, but each one of them communicates with each
node in the first group. The positions of all nodes are unknown.
We localize the fully connected nodes by exploiting their distance
measurements to the disconnected nodes. At the same time, the
positions of the disconnected nodes are obtained up to a translation
relative to the positions of the connected nodes. Recovering this
translation, can be obtained with an additional step. Simulation
results show that the proposed algorithm outperforms current
MDS-like solutions to the problem.

Index Terms—Multidimensional scaling, node localization, par-
tial network connectivity, wireless sensor networks.

I. INTRODUCTION

N ODE localization from pairwise Euclidean distance mea-
surements has become a fundamental research topic with

the growing interest in wireless sensor networks [1]. The clas-
sical MDS algorithm [2] transforms the problem into an eigen-
value problem of a so-called projected distance matrix which
solely depends on the distances. This matrix has rank two (for a
planar geometry) and its first two eigenvectors provide the co-
ordinates of all nodes up to a translation, rotation, and reflection
[3]–[9]. Applying the MDS algorithm requires a fully connected
sensor network, i.e., given a sensor network with nodes, we
need distance measurements.

However, in practice, only a limited number of distance
measurements are given due to communication limits imposed
on the nodes (e.g., battery constraints). For simplicity, assume
we have an ad-hoc sensor network with nodes where the
positions of all the nodes are unknown. Only nodes (in
practice, ) in the network can communicate with
all the other nodes. Such nodes can be beacon nodes which
usually have less stringent communication constraints. The
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other nodes cannot communicate with each other
due to communication limits, but communicate with the first

nodes. One possible solution to this setup is the scaling
by majorizing a complicated function (SMACOF) algorithm,
which is based on iteratively minimizing a global stress cost
function [3], [11] composed of: a weighted least squares (LS)
part and possibly a penalty term that includes prior information
about node positions. This approach involves a highly nonlinear
cost function which requires many initial guesses of the node
positions to ensure convergence to the global minimum. As a
result, suboptimal solutions have been investigated, which can
possibly be used as an initial point of this algorithm. Examples
are MDS-MAP [8], and SVD-Reconstruct [9], which both are
based on first completing the missing entries in the distance
matrix and then applying the classical MDS, or Nyström’s
algorithm [10] which is used to reduce the complexity of the
singular value decomposition step involved in the classical
MDS algorithm. With Nyström’s algorithm the positions of
the first group are estimated using the classical MDS method,
while the positions of the second group are estimated using
the LS method based on the former results and the mutual
measurements between the two groups [10, eqs. (8)–(9)].

Herein, we suggest a localization approach which extends the
classical MDS to the current setup. We localize the nodes of
the first group by exploiting their distance measurements to the
disconnected nodes. At the same time, the second group’s posi-
tions are obtained up to a translation relative to the former nodes.
If recovering this translation is also of interest, then a possible
additional step can be implemented. We examine our results
with Monte-Carlo simulations by evaluating the normalized root
mean square error (RMSE) between the true inter-node dis-
tances and their estimates. We compare our two-step approach
with the MDS-MAP [8], the SVD-Reconstruct [9], and Nys-
tröm’s algorithm [10]. Simulation results show that our pro-
posed approach outperforms these previous solutions.

II. PROBLEM FORMULATION

Consider sensor nodes randomly distributed in a two-di-
mensional plane. Let consist
of all the node positions, where , ,
is the position of the th node. We assume that we have two
groups of nodes: 1) nodes which are fully connected; 2)

nodes which are fully disconnected (i.e., each of the
nodes in the second group does not communicate with the other
nodes in this group, but communicates with each node in the
first group.) Let and

represent the set of node posi-
tions of the first group and the second group, respectively. The
distance measurements between the th and th nodes (given
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they are connected) is , where ,
and is the uncorrelated additive noise, where

is a known noise variance. The problem discussed herein is
briefly stated as follows: Given the available pairwise measure-
ments , determine the positions of the nodes in an arbi-
trary reference system (up to rotation, reflection and translation,
where absolute orientation is obtained using reference points).
In other words, our goal is to reconstruct the constellation of the
sensor network given partial pairwise node measurements.

III. POSSIBLE POSITION PROJECTIONS

Let us first consider the noiseless case. The available squared
distance measurements can then be written in a matrix form as

(1)

where , is the Hadamard product,
is a vector with all elements equal to one, and
is the symmetric communication connectivity ma-

trix of the network, with its th element, denoted by ,
equal to one if the th node and the th node communicate with
each other, and equal to zero if they do not communicate with
each other. The elements on the diagonal of this matrix are ar-
bitrary. The positions of the nodes appear in the second term.
The idea is therefore to omit the first and the last terms in (1)
while keeping the second term. We omit these two terms by
pre- and post-multiplying (1) by an orthogonal projection matrix

such that . This operation
can be considered as an extension of the classical MDS. We as-
sume that the structure of is

(2)

where . Given we de-

termine . Let be the matrix containing a basis for the
column span of . Then . We
discuss two possible types of , and present the effect of each
projection on the node positions. We emphasize that in the pro-
posed localization approach these projections are not directly
applied to the positions. Still, the purpose is to give an intuition
for choosing these projections by presenting their effect on the
positions of the nodes.

A. Projection Type A

Assume , where is a vector
with all elements equal to zero. Then and its associated
orthogonal projection matrix are

(3)

(4)

The projected node positions are where

(5)

(6)

with and

the centers of gravity of the first node
group and second node group, respectively. The advantage
of this projection is that it decouples the two groups, but the
disadvantage is that both groups are translated to the origin. To
obtain the relative distance between the centers of gravity of
the two groups we need the following projection.

B. Projection Type B

Assume . Then and its associated
orthogonal projection matrix are

(7)

(8)

The projected node positions are

(9)

where the relative distance vector between the centers of gravity
of the two groups is defined as

(10)

and , . The advan-
tage of using this projection is that it retains the relative transla-
tion between the centers of gravity of the two groups, while the
disadvantage is that all the nodes of the second group are trans-
lated to the same position.

IV. THE PROPOSED LOCALIZATION APPROACH

The idea of reconstructing the configuration of the sensor net-
work is as follows: use to estimate , and . If one is
also interested in the relative translation vector , then first use

to estimate (given the estimate of ), and then update
the estimate of by . We now discuss each of
these steps in detail.

A. The Result of Using Projection

By post- and pre-multiplying (1) by we get

(11)

We recover , (up to translation, reflection or rotation) as

where

(12)

It is clear that which minimizes (12) is
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(13)

Substituting (13) into (12) yields

(14)

By taking the derivative with respect to (w.r.t.) we obtain

(15)

Since no closed-form expression for that zeros (15) exists,
we estimate it as detailed in Algorithm 1. The final estimate is

denoted by . After obtaining , we substitute the result in

(13) and obtain .

Algorithm 1 Estimating the positions of the fully connected
nodes

• Initial step: , where ,
contain the two largest eigenvalues of

, and their two associated orthonormal eigenvectors,
respectively.

• Updating step: Given determine as follows.

1) Let be the estimate of at the th iteration
step.

2) Calculate the gradient
according to (15).

3) Update the step size, , as

using (14).

4) Update the estimate, .

5) if where is a

predefined tolerance, then , else perform
steps 1–4.

B. The Result of Using Projection

Given the estimated positions of the previous step, we are in-
terested in estimating the relative distance vector between the
two groups in order to reconstruct the complete network config-
uration. By post- and pre-multiplying (1) by , we
get after a few mathematical steps that

(16)

where , , and

. Note that describes the scat-
tering radius around the center of gravity of the positions of
the nodes in the second group. We are interested in estimating
the relative distance given the translated positions of the first
group , and consider as a nuisance parameter. To estimate

we minimize

(17)

By taking the derivative w.r.t. and equating the result to zero,
and using the fact that (since the
center of gravity of is at the origin), we get that the estimated
relative distance vector is

(18)
Note that does not depend on the estimate of the nuisance
parameter , and we therefore do not proceed in estimating it.

We now substitute (obtained in the first step) instead of

in (18). We then update (obtained in the first step) by

. Finally, contains
the estimated node positions up to rotation, reflection, and trans-
lation w.r.t. the original configuration (which can be corrected
using anchors in the network).

V. NUMERICAL RESULTS

We compare our proposed algorithm with the MDS-MAP
method [8], the SVD-Reconstruct method [9] (where each
missing entry is replaced by zero since it is the optimal choice
as indicated in [9]), and with Nyström’s method [10]. We
also show some results for the SMACOF algorithm [11, pp.
150–157], one for a random initial point and one for an im-
proved initial point (our proposed method). We consider a
square area of 100 100 , and nodes
randomly positioned. The tolerance of the iterative search in
the first estimation step is .

In the first simulation, we consider the cases of ,
and . For each case we varied the noise

variance from to . For each noise vari-
ance we consider configuration realizations, and
for each configuration we perform Monte-Carlo
(MC) trials. Since all positions are unknown, we define

the RMSE as , where

, with

the estimated distance between the connected nodes
and at one configuration and one MC trial, and is the
number of connections (in this case ).
The results are shown in Fig. 1. As can be seen, our pro-
posed algorithm has the smallest RMSE, compared to other
MDS-like solutions. Both MDS-MAP and SVD-Reconstruct
have worse performance when the number of connections is
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Fig. 1. (Left) RMSEs versus the noise variance for� � ��, (center)� � ��,
and (right) � � ��.

Fig. 2. (Left) RMSEs of the initial solution and the iterative solution of the first
group and (right) the RMSE of the second group using the proposed method and
Nyström’s method.

small , however, when the number of the connections
is large , MDS-MAP has a similar performance as
the proposed algorithm and the Nyström’s method. From the
results, we observe that a good initial point for the SMACOF
algorithm is crucial and it is clear that the better the initial
point, the faster the convergence of SMACOF. That is why our
method is preferred over other MDS-like solutions if an initial
point for SMACOF is sought for. In Fig. 2 (left plot) we com-

pare the RMSE of with that of the initial estimate
(in this case ), and in Fig. 2 (right plot) we

compare the RMSE of of the proposed method with that
of Nyström’s method (in this case ).
For both cases we assume that . As can be seen, when
the noise variance increases, the gap between the RMSEs of

and increases, and thus the iterative solution

improves the RMSE of the initial estimate. The RMSE of is
also improved w.r.t. the Nyström’s method. So, our algorithm
outperforms this algorithm for all values of .

In the second simulation, we compare the RMSE versus
of our proposed algorithm with the other methods. We

varied from 10 to 90 with a step of 5. We assume that
. The results are shown in Fig. 3. As can be seen,

our algorithm outperforms the other MDS-like methods for all
values of .

Fig. 3. RMSEs versus the ratio ��� for � � ���.

VI. CONCLUSIONS

We consider the problem of reconstructing the configuration
of a sensor network (up to rotation, reflection, and translation)
from pairwise distance measurements assuming the network is
composed of two groups: one group contains nodes that com-
municate with each other, and the second group contains nodes
that do not communicate with each other, and only communicate
with each of the nodes in the first group. The classical MDS al-
gorithm cannot be applied in this case. Our approach is based on
performing two projections on the available set of distance mea-
surements. Simulations show that the proposed algorithm out-
performs other methods based on matrix completion techniques.
Future work will focus on: 1) examining other projections and
their effect on the node positions; 2) analyzing the performance
of the first step; 3) evaluating the complexity of the proposed
approach.
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