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Abstract—High accuracy and low cost are challenging require-
ments for localization in wireless sensor networks (WSNs).The
radio interferometric positioning system (RIPS) proposedin [1]
aims to meet both requirements at the same time. However,
it is vulnerable to channel fading, and suffers from the noise
aggravation due to the square operation. In this paper, we
propose a dual-tone radio interferometric positioning system
(DRIPS) using undersampling techniques, named uDRIPS. Our
proposed methodology is immune to flat fading effects, and avoids
the amplification of measurement noise by directly undersam-
pling the received signal. Furthermore, the time-of-arrival (TOA)
information is extracted from the phases of the received dual-
tone signals in the uDRIPS. As a result, it is able to localize
an asynchronous target with the help of synchronous anchors
(nodes with known positions). Moreover, we investigate the
integer ambiguity problem due to phase wrapping, and develop
a localization algorithm to estimate the unknowns alternatively.
Simulation results corroborate the efficiency of our proposed
algorithm.

Index Terms—Ranging, radio interferometric positioning, lo-
calization, undersampling

EDICS: SAM-LOC, Sensor network localization algo-
rithms.

I. I NTRODUCTION

Accurate and low-cost localization is a critical task for wire-
less sensor networks (WSNs). The data collected by sensors
need to be associated with location information [2], [3]. The
low-cost constraint of sensor nodes calls for low-complexity
localization methods while the high accuracy requirement
makes the localization task challenging. Although the unique
properties of ultra-wideband (UWB) impulse radio (IR) [4],
[5] promote time-based localization with high accuracy, the
prohibitively high Nyquist rate and hardware requirement of
UWB systems hinder their popularity. Hence, we concentrate
on narrowband localization systems to increase the localization
accuracy.

A radio interferometric positioning system (RIPS) is pro-
posed in [1] to achieve both high accuracy and low cost.
The ranging principle of the RIPS can be exemplified for
synchronous nodes. Two transmitters emit two sinusoid signals
of slightly different frequencies denoted bya1cos(2πf1t)
and a2cos(2πf2t), respectively, wherea1 and a2 are real-
valued amplitudes, andf1 and f2 the frequencies with
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f1, f2 ≫ |f1 − f2|. A receiver creates a low-frequency
differential signal by low-pass filtering (denoted byLPF{·})
the received signal strength indicator (RSSI) signal as

LPF{r2(t)}

=LPF{(a1cos(2πf1(t− τ1))+a1cos(2πf2(t− τ2))+n(t))
2}

=(a21+a22)/2+a1a2cos(2π(f1−f2)t+2π(f2τ2−f1τ1))+ñ(t),

wherer(t) is the received signal,τ1 andτ2 are the propagation
delays, n(t) is the noise term, and̃n(t) is the aggregate
noise term including the noise autocorrelation and signal-noise
cross-correlation terms. Thus,ñ(t) has a higher variance than
n(t). Note that the phase of the low-frequency differential
signal (a1a2cos(2π(f1−f2)t+ 2π(f2τ2−f1τ1))) bears the
range information. Nevertheless, the RIPS only accommodates
additive white Gaussian noise (AWGN) channels, suffers from
the increased noise due to the square operation, and faces the
integer ambiguity issue.

The RIPS is further extended in [6], [7] to track mobile
nodes, where Doppler shifts are exploited such that veloc-
ity estimates of moving targets can be achieved. Moreover,
spinning anchors transmitting radio signals with fixed fre-
quencies (SpinLoc) are proposed in [8] to produce specified
Doppler signals in order to estimate angle-of-arrivals (AOAs).
Software defined radios are used to implement interferomet-
ric localization with the assistance of AOAs in [9]. The
FPGA implementation of the RIPS is investigated in [10]
to provide a more robust and flexible platform. A stochastic
RIPS (SRIPS) is developed in [11] to make use of radios at
2.4GHz. An asynchronous RIPS (ARIPS) is proposed in [12],
where dual-tone signals from separate nodes are employed
to localize asynchronous targets. However, the ARIPS is still
designed for AWGN channels. More recently, a dual-tone radio
interferometric positioning system (DRIPS) for multi-target
localization is developed in [13] to combat the flat-fading
channel. It employs a square-law device similar to the RIPS to
produce a low-frequency differential signal, and thus suffers
from high noise power and not-so-flexible hardware design
(e.g., the choice of sampling rate).

In this letter, we introduce an undersampling technique to
DRIPS, and name it as uDRIPS. It inherits the dual-tone signal
structure of the DRIPS, but does not employ the square-law
device. Hence, uDRIPS maintains all the advantages of the
DRIPS, but does not introduce noise multiplication terms.
Therefore, uDRIPS avoids noise amplification. Different from
the dual-tone signals of the ARIPS, the two tones of the dual-
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tone signal in the uDRIPS are close to each other in frequency.
Moreover, their frequency difference is designed to be smaller
than the channel coherence bandwidth. Therefore, the uDRIPS
is robust to flat-fading channels. Given the freedom of the
target clock, the time-of-arrival (TOA) plus an offset due to the
unknown transmission time can be extracted from the phases
of the dual-tone signals in the uDRIPS. Hence, our proposed
algorithm is able to localize an asynchronous target with the
assistance of synchronous anchors. Furthermore, we explore
the integer ambiguity problem due to phase wrapping, and
develop a localization algorithm to find the unknowns alterna-
tively. Simulations demonstrate the promising performance of
the proposed system.

II. SYSTEM MODEL

Let us consider a scenario where a single target is to be
localized by communicating withM anchors with known
positions. The target transmits a dual-tone signal

s(t) = aejϕej2π(fc+fb)(t−t0)(1 + ej2πgb(t−t0)), (1)

wherea is the real-valued amplitude of each of the compo-
nents,ϕ is the unknown initial phase offset,fc is the carrier
frequency,fb is the frequency of the first tone component and
greater than zero,gb is the small frequency difference between
the two tones and greater than zero as well, andt0 is the
unknown time instant when the target starts to transmit. The
following assumptions are adopted throughout the paper.

Assumption 1: All M anchors are assumed to be synchro-
nized, but the target clock can run independently.

Assumption 2: The unknown t0 is due to the lack of
synchronization between the target and the anchors, and thus
it introduces an unknown phase offset between the two tones.
SinceM anchors are synchronized, the unknownt0 is assumed
to be the same with respect to (w.r.t.) all the anchors.

Assumption 3: The frequency differencegb is assumed to be
smaller than the channel coherence bandwidth. As a result, the
two tones of the dual-tone signal experience the same channel
fading effect [14], and a flat-fading channel model is applied
here to account for the fading effect.

With these assumptions, the signal received by thelth
anchor is down converted byfc, and then modeled as

rl(t) = βls(t− τl)e
−j2πfct+jηl + wl(t), (2)

whereβl is a complex channel coefficient attributing to the
flat-fading channel effects, and can be modeled as a zero-
mean complex Gaussian random variable with varianceσ2

l

representing the average power of the flat-fading channel.
Moreover, τl is the unknown propagation delay,dl is the
distance between the target and thelth anchor, anddl = ντl,
whereν is the signal propagation speed. The unknown initial
phaseηl is due to the randomness of the receiver oscillator.
Furthermore, the noise termwl(t) is modeled as a zero-
mean complex Gaussian random process with varianceσ2.
Substituting (1) into (2), we obtain

rl(t)=αlβle
j2πfbtejθl(1 + ej2πgbtejφl) + wl(t), (3)

whereθl = −2π(fc + fb)(t0 + τl), φl = −2πgb(t0 + τl), and
αl = aej(ϕ+ηl) is an aggregate complex parameter to absorb

BPF
Range 

Estimator

Undersampling

TOA

+

an offset

Fig. 1. The receiver structures of the uDRIPS.

the effects of the random initial phases between the target and
the lth anchor. Note thatφl includes the range of interest (via
τl). Although we only consider a single target scenario, the
uDRIPS can be adapted for a multi-target scenario similarly
as the DRIPS.

III. R ANGE ESTIMATION

In this section, we propose a ranging method for the
uDRIPS, and investigate the integer ambiguity problem.

A. uDRIPS: Range Estimation With Undersampling

The receiver structure of the uDRIPS is shown in Fig.1,
where the received signal is down converted, bandpass fil-
tered, and directly undersampled. Since the bandwidth of
each component ofrl(t) is much less than the frequency
difference gb of the two components and only the phases
of these tone components but not their frequencies are of
interest, we can make use of the undersampling technique. The
reason to employ the undersampling technique is two-fold: i)
to simplify the receiver structure, and ii) to avoid amplifying
the noise. As a result, the square-law device is removed and
no noise autocorrelation or signal-noise cross-correlation terms
are generated in the uDRIPS compared to the DRIPS and
RIPS. Note that the down conversion is necessary to facilitate
the design of the bandpass filter (BPF) and the employment
of analog-to-digital convertor (ADC). The BPF, whose center
frequency isfb + gb/2 and bandwidth is greater thangb, is
designed to suppress the interference due to undersampling.
The frequency down conversion also helps to choose the ADC
since the high frequency and bandwidth require high accuracy
of the sampling clock and hardware.

At the receiver, the signalrl(t) in (3) is undersampled at
the ratefU

s directly, wherefU

s < 2(fb + gb). For the sake of
brevity, the noise term is neglected from now on. Collecting
all L samples into a vectorrU

l , we arrive at

r
U

l = A
U

Lx
U

l , (4)

wherexU

l = αlβl[e
jθl , ej(θl+φl)]T ,

andAU

L = [ΦL(fb/f
U

s ) ΦL((fb + gb)/f
U

s )]
with ΦL(f) = [1, ej2πf , . . . , ej2π(L−1)f ]T . Consequentially,
a least-squares (LS) estimator ofx

U

l is given by

x̂
U

l = (AU

L)
†
r
U

l , (5)

and the phase of interestφl can be estimated as

φ̂l = arg {[x̂U

l ]
∗
1[x̂

U

l ]2}+ 2πk, (6)

where[a]n denotes thenth entry of the vectora, the unknown
integer k accounts for the integer ambiguity due to phase
wrapping, and(·)∗ denotes the complex conjugate. Usingφ̂l in
(6), the TOA with an offset due to the unknown transmission
time t0 can be estimated. However, the integer ambiguity issue
has to be considered in the TOA estimation. More details about
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the integer ambiguity issue will be discussed in Section III-B.
Several remarks are now due.

Remark 1: The unknown phase shift (θl), the effects of the
random initial phases (αl), and the flat-fading channel (βl) are
absent in (6). Hence, the uDRIPS is immune to the uncertainty
of the initial phases and the flat-fading effect. In this case,
uDRIPS is a non-coherent localizer.

Remark 2: The clock of the target does not have to be
synchronized with the anchor clocks. New targets can enter
the network and can be localized at any time.

Remark 3: The main sources of ranging errors are due to
the lack of time and frequency synchronization among the
anchors. The time synchronization among the anchor receivers
can be accomplished by various approaches [15], [16]. For
example, using the method proposed in [16], the average
time synchronization error can be below1 µs. As a result,
the phase error is less than10−6 · 2πgb. Furthermore, the
frequencies of the two tones (fb + gb and fb) in (3) may
not be exactly known due to oscillator uncertainties of the
target transmitter or the anchor receivers. In this situation,
these frequencies can be estimated similarly by the ESPRIT-
type method proposed in the ARIPS (see [12]), and then the
phases is extracted using the estimated frequencies. Assuming
a frequency estimation error∆f , it would be translated as an
additional phase estimation error (−2π∆f(t0 + τl)).

Remark 4: The choice offU

s is critical in the uDRIPS. It
should fulfill the conditions that

fU

s 6= gb/n1 and fU

s 6= fb/n2, (7)

wheren1, n2 ∈ Z+ and Z+ includes all positive integers.
In order to extract the phase information of the two tones, the
tones should not alias with each other and do not reduce to DC
components after undersampling. This leads us to the condition
imposed by (7). Furthermore, the lower the undersampling
rate fU

s is, the smaller the burden is for the digital signal
processing part of the receivers. On the other hand, the lower
the undersampling ratefU

s is, the fewer samples are collected
in a fixed time duration resulting in the degradation of the
estimation accuracy. Therefore, there is a tradeoff for the
selection offU

s .

B. Integer Ambiguity Issue

As we observe from (6), the trueφl cannot be calculated
because of the unknown integerk. This is the well-known
integer ambiguity problem due to phase wrapping [17], [18].

Hence, we can only obtaiñ̂φl ( ˆ̃φl = arg {[x̂U

l ]
∗
1[x̂

U

l ]2}) instead

of φ̂l from (6), whereˆ̃φl is the estimate of̃φl andφl = φ̃l +
2πk. Recall thatτl is coupled witht0 asφl = −2πgb(t0+τl).
Hence, we can obtain the estimate of the TOA plus an offset,
called the biased TOA as

t̂0 + τ̂l = −(
ˆ̃
φl/2π + k)/gb. (8)

Let us defineδ0 = −2πgbt0 and δ̃0 = δ0 − 2π⌊δ0/2π⌋,
εl = −2πgbτl and ε̃l = εl − 2π⌊εl/2π⌋. As

⌊φl/2π⌋=

{
⌊δ0/2π⌋+⌊εl/2π⌋ if 0 ≤ δ̃0 + ε̃l < 2π

⌊δ0/2π⌋+⌊εl/2π⌋+1 if 2π ≤ δ̃0 + ε̃l < 4π
,

(9)

we arrive at

φ̃l =

{
δ̃0 + ε̃l if 0 ≤ δ̃0 + ε̃l < 2π

δ̃0 + ε̃l − 2π if 2π ≤ δ̃0 + ε̃l < 4π
. (10)

According to (10),φ̃l is related toδ̃0 and ε̃l in two possible
ways. In the next section, we will simplify the above integer
ambiguity problem, and develop the corresponding localization
method using the biased TOAs.

IV. L OCALIZATION ALGORITHM

In this section, a localization algorithm is proposed for the
uDRIPS with a simplified integer ambiguity problem, which
indicates that the phase shiftεl (εl = −2πgbτl) is in the
range of(−2π, 0) (−2π < εl < 0). Hence, the corresponding
distancedl (dl = ντl) is in the range of(0, ν/gb), which
is called the resolvable range, and the distancedl in the
resolvable range can be estimated without ambiguity. The
smaller the frequency differencegb is, the larger the resolvable
range is. It also ensures that two tones experience the same
channel fading effect. However, a larger frequency difference
gb facilitates a higher estimation accuracy. Therefore, there
is a tradeoff in designinggb. According to the range ofεl
(−2π < εl < 0), we achieve⌊εl/2π⌋ = −1 and ε̃l = εl +2π.
We can rewrite (10) in the relation w.r.t.dl as

−
φ̃lν

2πgb
=

{
b0 + dl − ν/gb if 0 ≤ δ̃0 + εl < 2π

b0 + dl if 2π ≤ δ̃0 + εl < 4π
,

(11)
where b0 = −νδ̃0/2πgb is the distance offset due to the
unknown transmission time.

Let us collect all the phase estimatesˆ̃φl into a vectorv as

v = −(ν/2πgb)[
ˆ̃
φ0,

ˆ̃
φ1, ..,

ˆ̃
φM−1]

T . Without the error term,
the model ofv is given by

v = d+ b01M + (ν/gb)u, (12)

where d = [d0, d1, ..., dM−1]
T with dl = ‖sl − x‖, sl

and x denote the coordinates of thelth anchor and the
target, respectively, andu belongs to the set{0,−1}M . The
nonlinear relationship of (12) w.r.t.x increases the difficulties
in solving (12). An alternating least squares (ALS) solution
[19] is employed here. The unknown parametersx and b0
are categorized as a subset, whileu is another subset. We
define the estimates of thenth iteration asx̂(n), b̂

(n)
0 , and

û
(n). Let us assume the knowledge ofû

(n−1). Thus, we obtain
a linear model w.r.t.x and b0 by moving (ν/gb)û

(n−1) and
b01M to the left side of (12). After element-wise multiplication
(denoted by⊙) and moving the unknowns (x, ‖x‖2 and b0)
to the left side, we obtain

Φ− ṽ
(n) ⊙ ṽ

(n) = 2ST
x− 2b0ṽ

(n) +(b0 − ||x||2)1M , (13)

where ṽ(n) = v − (ν/gb)û
(n−1), S = [s0 s1 ... sM−1], and

Φ = [‖s0‖2, ‖s1‖2, ..., ‖sM−1‖2]T . As a result, the estimate
of x

(n) and b
(n)
0 can be achieved based on (13) using an

LS estimator [20]. Consequently, the update ofû
(n) can be

employed by a simple rounding operation as

û
(n)=





0 if round
(gb
ν

(
v − d̂

(n) − b̂
(n)
0 1M

))
≥ 0

−1 if round
(gb
ν

(
v − d̂

(n) − b̂
(n)
0 1M

))
< 0

.

(14)
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The ALS algorithm is summarized in Algorithm 1.

Algorithm 1: an ALS approach to localize the target

1) Initial step:û(0) = 0

2) Updatex̂(n) and b̂(n)0 given û
(n−1) based on the

linear model (13)
3) Updateû(n) given x̂

(n) and b̂(n)0 using (14)
4) Go back to step 2), unless‖x̂(n) − x̂

(n−1)‖ < ǫ or
reach the maximum iteration number

V. SIMULATION RESULTS

In this section, the performance of the uDRIPS is evaluated,
and compared to the DRIPS in [12]. The frequency of the
first component of the dual-tone signalfb = 5MHz, and the
frequency differencegb = 50 kHz, which is smaller than the
typical channel coherence bandwidth100 kHz according to the
Extended Typical Urban (ETU) channel model in the 3GPP-
LTE standard [21]. The observation duration is5 millisec-
onds (ms). The amplitude of the dual-tone signala = 1, and
the carrier frequencyfc = 2.45GHz. Moreover, the average
channel power of the flat-fading channel is always assumed
to be 1 for all channels, i.e.,σ2

l = 1, l = 0, . . . ,M − 1.
The signal-to-noise ratio (SNR) is defined as1/σ2, where
σ2 is the variance of the noise termwl(t). Furthermore, we
assume that the target is in the range of the resolving limit
(0 < dl < ν/gb = 6 km with ν = 3 × 108 m/s). Thus, a
simplified integer ambiguity problem is considered here. For
each evaluation,10, 000 Monte-Carlo runs are carried out.

In Figs. 2 and 3, the ranging accuracy of the uDRIPS is
compared to the DRIPS excluding the impact of the unknown
transmission instantt0. Hence, we assume the target and the
anchors are synchronized (t0 = 0) in Figs. 2 and 3. Recall that
the target is in the resolvable range. The true distance between
the target and the anchor is set to be1.2 km. In each Monte-
Carlo run, the complex channel coefficientβl (βl ∼ CN (0, 1))
is generated randomly.

The root mean square error (RMSE) of the range estimate
is shown in Fig. 2. The uDRIPS (the solid lines) employing
undersampling frequencies that satisfy the condition imposed
by (7) performs well (seefU

s = 15 kHz and fU
s = 55 kHz

cases in Fig. 2), and the estimation accuracy increases with
the increasing sampling frequency. However, for the sampling
frequency of25 kHz, the uDRIPS (the solid line with “+”
markers) fails, since the condition imposed by (7) is violated.
Note that for a given observation duration, the higher the
frequency is, the more samples are obtained. With a half
number of samples compared to the DRIPS, the ranging
accuracy of the uDRIPS (fU

s = 55 kHz) is still slightly better
than the DRIPS (fD

s = 110 kHz) at low SNR. This is because
that the uDRIPS does not suffer from the noise aggravation
due to the square operation used in the DRIPS.

The complementary cumulative distribution function
(CCDF) curves of the absolute distance errors for the uDRIPS
(fU

s = 55 kHz) and the DRIPS (fD

s = 110 kHz) are illustrated
in Fig. 3, respectively, whereSNR = {5 dB, 25 dB, 45 dB}.
Although the number of samples used in the DRIPS is two
times of the one in the uDRIPS, the CCDF curves of the
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uDRIPS (the solid lines) are lower than the ones of the
DRIPS (the dashed lines), and the differences increase as the
SNR decreases. The noise amplification is significant at low
SNR for the DRIPS.

Localization accuracy is evaluated with five anchors and
a target. The target is not synchronized with anchors. Thus,
the time instantt0 is randomly generated in the range of
(0, 100]µs for each run. The coordinates for five anchors and
the target ares0 = [0, 1000m]T , s1 = [1000m, 0]T , s2 =
[0, 0]T , s3 = [1000m, 2000m]T , s4 = [2000m, 1000m]T and
x = [1500m, 1200m]T , respectively. The median absolute
error (MAE) is used as a performance metric in this simulation
to mitigate the effects of the outliers due to the deep fading.
The integer ambiguity issue is solved by the ALS approach
proposed in Section IV. The localization accuracy is illustrated
in Fig. 4 for both the uDRIPS and the DRIPS, where the
uDRIPS (fU

s = 55 kHz) slightly outperforms the DRIPS
(fD

s = 110 kHz) even with a half number of samples.
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