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Abstract—The localization of autonomous underwater vehicles
(AUVs) has been a difficult yet fundamental issue in many
applications. The traditional way to localize an AUV is based
on dead-reckoning (DR) using the measurements from inertial
measurement units (IMUs). However, the accuracy of DR cannot
be guaranteed for a long period. With the development of
underwater communications and ranging, recent AUVs can
localize themselves by sharing position information with anchors
(whose positions are known). Occasionally, we have to localize an
AUV in anchor-free environments. Without reference positions,
localization could be challenging. Recently, multiple-AUV (multi-
AUV) simultaneous navigation is becoming a prevalent trend
and cooperative localization becomes a new way to improve the
localization accuracy. In this paper, aiming at anchor-free scenar-
ios, we propose a novel cooperative localization algorithm using
belief propagation (BP), called belief propagation based dead-
reckoning (BPDR). Meanwhile, to reduce the communication
overhead among AUVs, intermittent BPDR (IBPDR) algorithm
is designed. The simulations show satisfactory performance in
localization by both BPDR and IBPDR.

I. INTRODUCTION

Ocean exploitation is becoming more and more important
for human beings. Autonomous underwater vehicles (AUVs)
are becoming indispensable due to their high flexibility and
long-range navigation ability. When carrying out a task, an
AUV’s location information is fundamental and determines
the ability of completing the mission. However, AUV local-
ization has always been a challenge in underwater applications
because of lack of Global Positioning System (GPS) signals,
limitations of acoustic communications, unpredictable under-
water environments and etc. The methods in AUV localization
have been surveyed in [1]. So far, the methods can be
roughly divided into three types [2]: i) inertial localization;
ii) acoustic localization; and iii) geophysical localization.
The inertial localization uses measurements obtained from
inertial measurement units (IMUs) to estimate the position
by dead-reckoning (DR). Nevertheless, for a long time, the
estimation error can be several sea miles per hour [3]. Long
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baseline (LBL), short baseline (SBL) and ultrashort baseline
(USBL) are typical methods of acoustic localization. Although
the estimation accuracy could be high, the cost of system
maintenance and limited service region restrict their applica-
tions. Geophysical localization is a relatively new branch of
localization techniques, using physical characteristics of the
surroundings to localize AUVs.

Recently, multiple AUVs simultaneously carrying out a
task becomes popular with the development of underwater
communications and navigation. In addition, multiple-AUV
(multi-AUV) cooperative navigation can provide a better local-
ization performance [4]. Leader-follower is a popular pattern
of cooperation [5], where the leader AUV is always armed
with high-precision sensors or frequently surfaces to obtain
GPS signals. Cooperation with communication and navigation
aids (CNAs) is similar to leader-follower. It is applied in [6]–
[8], where CNAs are always surface vehicles with the ability
of receiving GPS signals. As for localization algorithms,
extended Kalman filter (EKF) is a popular one [8]–[10].
Belief propagation (BP) is also a well-known range-based
cooperative localization algorithm which is widely used in
wireless networks (statical and mobile) [11]–[13]. Its naturally
distributed structure is suitable for multi-AUV cooperative
localization. Moreover, BP can provide not only the location
estimates but also the uncertainties of the location estimates.
Up to now, most research works involve anchors or devices
with known positions. However, there are many cases where
no anchors are available. In such situation, with no absolute
reference, localization is more difficult.

In this paper, we propose cooperative localization algo-
rithms for multiple AUVs with underwater communication and
ranging capabilities aiming at anchor-free environments. Mak-
ing use of range measurements and DR, we first propose a BP-
type algorithm, called belief propagation based dead-reckoning
(BPDR). Moreover, to reduce the communication cost of
cooperation among AUVs, we further design an algorithm
called intermittend BPDR (IBPDR). The simulation results
show good performance of the proposed algorithms. The rest
of this paper is arranged as follows. The system model is
described in Section II. In Section III, the proposed cooperative
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localization algorithms are represented. The simulation results
are delivered in Section IV.

II. SYSTEM MODEL

In this paper, a team of four AUVs is considered in
an anchor-free environment with low possibility or even no
possibility of emerging from the sea to gain GPS signals. Such
environment is very typical. For example, the deep sea where
frequent surfacing is not feasible, or the polar regions covered
with ice. Although the underwater environment is a 3D space,
every AUV carries a depth sensor, by which the AUV’s depth
is measured. Without loss of generality, we can simplify the
position model to a 2D case with coordinates xki = [αki , β

k
i ]
T .

The superscript and subscript indicate the time index and the
AUV index, respectively. In this paper, we omit the superscript
for simplicity unless it is necessary. Fig. 1 shows the scenario.

Fig. 1: System Model

Except for the depth sensor, we assume that every AUV is
equipped with navigation sensors, such as IMUs and Doppler
velocity log (DVL), and acoustic modems with ranging ca-
pability to measure the distances between AUVs. The IMUs
and DVL are the sources of measurements which are mainly
used in DR to deduce the AUV’s position. Furthermore, in this
paper, we assume that the quality of acoustic communication
is always fine.

The acoustic modems measure the relative distance between
two AUVs, which can be modeled as

zij = dij + nij , (1)
= ‖xi − xj‖+ nij , (2)

where dij is the real distance between the ith and jth AUVs,
xi = [αi, βi]

T is the position of the ith AUV. The measured
distance is corrupted by additive zero mean Gaussian noise nij
with identical variance σ2

ij = σ2 for all AUVs. Nevertheless,
the Gaussian measurement model may not be enough for
practical applications. In localization problems, non-Gaussian
situations widely exist [14]. Fortunately, the algorithms we
propose in the next section are particle-based. Thus, the algo-
rithms can be easily extended to non-Gaussian measurement
models.

III. THE ALGORITHMS OF COOPERATIVE LOCALIZATION

In this section, the details of the proposed cooperative
localization algorithms are described. We first introduce the
core techniques used in the algorithms. Then the proposed
cooperative methods are introduced.

A. Dead-Reckoning

DR is widely used in many fields. As long as a vehicle is
armed with IMUs, the problem can be solved by DR. Since
GPS signals are not available underwater, DR becomes sig-
nificantly important in AUV navigation. Using the navigation
orientation and the velocity obtained from sensors, we can
calculate the position xk+1 = [αk+1, βk+1]

T (we omit the
subscript in this subsection, as DR is the same for all the
AUVs) at the time step k+1 with the known previous position
xk = [αk, βk]

T using DR

αk+1 = αk + vktsinθk, (3)

βk+1 = βk + vktcosθk, (4)

where vk is the velocity of the vehicle at the time step k, t
is the time duration between two time steps, and the vehicle’s
heading angle is described by θk.

One of DR’s important advantages is that it needs mea-
surements only from internal sensors. No communications
with other devices are required. This strength also makes the
vehicle stay mute which is necessary in some circumstances.
However, the weakness of DR is also obvious that the accuracy
is guaranteed only for a short time period and the position
estimation error grows without bound as time goes on [2].

The algorithms we propose in Section III-C and III-D make
use of DR and cooperations among AUVs, devoting to slow
down its divergence rate and guarantee the estimation accuracy
for a long time period.

B. Belief Propagation

In this subsection, we describe the basic mathematical
principles of the belief propagation and how it is applied in
localization.

Graphs can be used to solve inference problems, in which
each node is associated with a random variable and represents
a probability distribution. BP is a message-passing algorithm
based on graphs for distributed inference. To illustrate the
principle of BP, we first define a set of nodes V associated
with a variable set X and a set of edges E in which every
edge connects two nodes {i, j ∈ V}.

Based on the graphical model, the joint posterior distribution
p(X|Y ) can be derived [15]

p(X|Y ) =
∏

(i,j)∈E

ψij(xi,xj)
∏
i∈V

ψi(xi), (5)

where Y indicates the observations of the random variables
X = [x1,x2, ...,xn]

T , xi ∈ X , and n is the number of
nodes in the network. The functions ψij and ψi are poten-
tial functions in graphical models, describing the pairwise
relations between nodes and local information of a single
node, respectively. For localization, the position of an AUV
can be viewed as the state of a variable xi, the function
ψi(xi) denotes the prior position distribution pi(xi) and
the function ψij(xi,xj) is described by the measurement
likelihood function p(dij |xi,xj) [16].



For a certain variable xi, our goal is to calculate its
marginal posterior distribution p(xi|Y ), and use minimum
mean squared error (MMSE) criteria (or maximum poste-
rior (MAP) criteria) to obtain its estimated state (position)
x̂i =

∫
xip(xi|Y ) dxi. The conventional way of obtaining the

marginal posterior distribution of variable xi is given below

p(xi|Y ) =

∫
p(X|Y ) d ∼ {X} , (6)

where ∼ {X} denotes all the variables in X except xi. Now
a problem is arisen that the straightforward computation of (6)
is usually impractical.

BP is an iterative message-passing algorithm, also known as
the sum-product algorithm, designed to calculate the marginal
distribution p(xi|Y ) [15]. The process of BP is simple. In
every iteration, every node computes the messages and sends
them to its neighbors, then calculates its own “belief” (an
approximation of the marginal posterior distribution of the
associated variable xi) with received messages.

Let us define the neighbors of node i as N(i). The message
sent from node i to one of its neighbors j ∈ N(i) can be
obtained as [15]

mi→j(xj) ∝
∫
ψij(xi,xj)ψi(xi)

∏
k∈N(i)\j

mk→i(xi)dxi.

(7)
The message is defined as a combination of pairwise relation
between two nodes, the local information of the node i and
the incoming messages from other nodes. After receiving all
the messages from neighbors, the “belief” of each node can
be calculated by

bi(xi) ∝ ψi(xi)
∏

k∈N(i)

mk→i(xi). (8)

If the graph is tree-structured, the “belief” of node i will
eventually converge to p(xi|Y ).

From (7) and (8), we can implement BP to get the approxi-
mate marginal distribution. However, the closed-form solutions
of (7) and (8) are available only under Gaussian assumption
(continuous version) [12]. The Gaussian uncertainty model is
problematical in practice, as non-Gaussian situations widely
exist. To ensure the usability of BP in AUV localization, we
apply an extended version of BP, based on particle meth-
ods, called nonparametric belief propagation (NBP), which
is suitable for localization. The main idea of NBP is that
using particles to represent the position distributions of nodes.
In this paper, our implementation of BP is based on NBP.
More details about NBP and its applications in localization
are shown in [14].

C. Cooperative Navigation Using BPDR

In anchor-free environments, without any absolute position
information, DR is the only solution for single-AUV localiza-
tion. Nevertheless, [4] has proved that cooperative methods for
multiple AUVs can improve the position estimation accuracy.
Thus, we propose a cooperative localization algorithm using
both DR and BP.

The most common way of localization without anchor is that
using DR to estimate position when the AUV is underwater
and frequent surfacing to fix DR’s deviation by GPS. In reality,
frequent surfacing is not a good option. Because it is energy-
consuming or impossible in ice-crusted regions. The main idea
of our algorithms is that using the BP localization method to
replace the GPS-fix (surfacing) process. Thus, we can slow
down the divergence rate of DR, and avoid surfacing energy
consumption.

Fig. 2: Procedure of BPDR

To illustrate the procedure of BPDR, shown in Fig. 2, we
label our four AUVs as No.1 to No.4, and define three kinds
of time set T iDR, T iBP and T . The sets T iDR and T iBP contain
the time steps that No.i AUV will use DR or BP to estimate
its position respectively. The set T includes all the time steps
of navigation.

T iBP = 4k + i, i = 1, 2, 3, 4, k ∈ N, (9)

T iDR = T \T iBP . (10)

From (9) and (10) we can see that BPDR views four time
steps (the number of AUVs) as a period, defined as T1.
Four AUVs use BP to cooperatively localize themselves in
sequence periodically. In this way, the deviation of each AUV
caused by DR is fixed or alleviated once in a period. For the
AUVs that are just fixed by BP at the latest time step and
the one before that, we view them as anchors. In this way,
their position distributions can be represented only by their
coordinates instead of particles.

Note that the BP we use here is an adaption of standard
BP. In (8), ψi(xi) can be viewed as the prior position distri-
bution pi(xki ), as stated in Section III-B. In BPDR, pi(xki ) is
provided by bi(xk−4i ) with four times DR calculations. Thus,
pi(x

k
i ) (represented by a set of particles) could be corrupted,

especially when the deviation of DR is large. Therefore, we use
a Gaussian distribution, with mean E(pi(x

k
i )) (E(·) calculates

the average value) and variance σ2 , to approximate pi(xki ).

D. Intermittent BPDR

In wireless sensor networks (WSNs), energy conservation
is important and it is more relevant underwater. In our al-
gorithms, we use particle-based methods to implement BP in
cooperative localization. Although the result can be appealing,
the communication overhead of transmitting a set of particles



cannot be ignored and the throughput of acoustic modems
should fulfill the requirement of transmitting hundreds of par-
ticles at one time step. The works in [14] and [16] have studied
some ways to reduce the communication consumption by
decreasing the transmitted data volume. We reduce the com-
munication overhead, from another perspective, by decreasing
the communication frequency among AUVs. Sequentially, we
propose the intermittent BPDR (IBPDR) algorithm.

In every BPDR period, each AUV localizes itself using BP
in sequence. Our inspiration is to insert a silent interval (no
communication happens) between two periods to decrease the
information exchanging frequency. The concept of IBPDR is
shown in Fig. 3.
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Fig. 3: Procedure of IBPDR

We first define the period of IBPDR as T = T1 + T2, in
which T1 is the duration of BPDR and T2 indicates the silent
interval. Here, we focus on the silent interval and assume
that all AUVs know the arranged trajectory of every fleet
member. This assumption is reasonable, since the predesigned
paths of AUVs should be uploaded before the task. After the
communication period (BPDR period), AUVs are aware of
their neighbors’ positions. On the basis of this information
combined with the predesigned paths, when silent interval be-
gins, every AUV predicts its neighbors’ trajectories and treats
them as the received position information from its neighbors.
Then every AUV runs BP to localize itself simultaneously at
every time step. Taking Fig. 3 as an example, the silent interval
begins from time step 4k + 5. No.4 AUV “imagines” that it
receives its neighbors’ position information and, accordingly,
applies BP to estimate its own position. Since the neighbors are
imagined, we call this kind of neighbors as “virtual neighbors”.

In fact, IBPDR can be viewed as a general framework, for
the use of silent interval can be various. This gives IBPDR
many possibilities of further improvements.

IV. SIMULATION RESULTS

In this section, we provide simulation results about the
proposed BPDR and IBPDR algorithms used in an anchor-
free scenario. We consider a fleet of four AUVs navigating in
a 2D plane for T = 100 seconds. The velocity v of each AUV
is 4 m/s. The measured heading angles and velocities of AUVs
(obtained from IMUs and DVL respectively) are corrupted
with zero mean Gaussian noise with variance σ2

θ = 1 and
σ2
v = 0.04. The simulation parameters σ2

θ , σ2
v and v jointly

determine the divergence rate of DR. In order to make a clear
performance comparison among algorithms, the values of the
parameters we choose here exaggerate the divergence rate.
Thus, when T reaches 100, the deviation of DR is large enough
such that the performance curves of different algorithms are
clearly separated.

We compare the proposed methods with DR and EKF. Note
that, in both BPDR and IBPDR, the implementation of BP
follows the principle of NBP for mobile networks [17] with
200 particles. The number of iterations of BP process is 1. The
initial distribution of each AUV is assumed to be Gaussian
pi(x

1
i ) = N (x1

i , 1). In addition, the duration of silent interval
in IBPDR is T2 = 10 seconds. We implement intermittent EKF
(IEKF) [18], [19] to ensure the cooperative position update
rates of BPDR and EKF are equal. The state variable xki =

[αki , β
k
i , v

k
α,i, v

k
β,i]

T in EKF is different from that defined in
Section II, with vkα,i and vkβ,i denote the velocities along x
and y axis, respectively. The state evolution equation of EKF
is the same as that in [20].
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Fig. 4: The RMSE of different navigation methods

Fig. 4 shows the root-mean-square error (RMSE) of the
position estimation of different algorithms with the variance
of ranging error σ2 = 5 and σ2 = 15, respectively. The RMSE
results are performed by averaging over all four AUVs with
a thousand Monte Carlo simulation runs. From Fig. 4, it is
obvious that the best RMSE curves are provided by BPDR
in both subfigures, which also indicates a good robustness
of BPDR under different measurement accuracy. When σ2

increases from 5 to 15, BPDR suffers less accuracy loss. This
demonstrates the robustness of BPDR as well. Moreover, Fig
.4 reveals the nature of DR that it performs dependably only
for a short period.

We can also see that the performance of IBPDR is still
acceptable although there is a little accuracy loss compared
with BPDR. What’s important is that, the communication
consumption is dramatically reduced in IBPDR. Suppose that
the communication consumption of BPDR is E in a duration
of T1 +T2. Then in IBPDR, it reduces to T1E

T1+T2
. Usually, we

would like to choose T2 > T1. This is a trade-off between
estimation accuracy and communication consumption.
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