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Abstract—Radio interferometric positioning systems (RIPS)
are recently proposed for low-complexity and high-accuracy
localization. However, the original RIPS involves four nodes
(two transmitters and two receivers) for a ranging session, and
requires stringent time synchronization upon two receivers. In
this paper, an asynchronous radio interferometric positioning
system (ARIPS) is developed with larger positioning ranges. In
ARIPS, two anchors (nodes with known positions) transmit two
slightly different dual-tone signals. The differences of the two
dual-tone signals create two low-frequency differential signals
at the target receiver. The phase differences of the differential
signals bear the time-difference-of-arrival (TDOA) information,
i.e., the distance information. We develop two new methods to
estimate the TDOA with and without accurate knowledge of the
frequencies of the differential signals, respectively. By switching
the pairs of the anchor nodes, several TDOAs can be obtained
and thus the location of the target node can be estimated.
The proposed ARIPS is robust to carrier frequency offsets
(CFOs) and random phases due to asynchronous oscillators, and
increases the resolving range limit due to the well-known integer
ambiguity issue. Simulation results illustrate the performance of
the proposed ARIPS.

Index Terms—Ranging, sensor networks, synchronization,
time-difference-of-arrival, radio interferometry, localization

I. INTRODUCTION

Localization-awareness is crucial for wireless sensor net-

works (WSNs) [1], [2], since the data collected by sen-

sors should be stamped with their corresponding locations.

Numerous applications of WSNs require accurate location

information, such as target tracking, environment monitoring,

search and rescue etc. The low-power and low-cost constraints

of sensor nodes impose great challenges on the development of

low-complexity localization strategies. Meanwhile, the high-

accuracy requirement further increases the localization diffi-

culties. Although the distinguish properties of ultra-wideband

(UWB) impulse radio (IR) [3], [4] enable time-based local-

ization with high accuracy, the prohibitively high Nyquist

sampling rate of UWB systems discourages their popularity.

Therefore, to increase the accuracy of localization systems

using narrowband signals is still of great interest considering

implementation cost.

A low-complexity radio interferometric positioning system

(RIPS) is proposed in [5] to achieve both high accuracy

and large positioning area. In principle, the RIPS estimates

the phase of a low-frequency differential signal produced

by two sinusoid signals with slightly different frequencies,

where the phase is related to the range information. The RIPS

requires time synchronization of two receivers and faces the

integer ambiguity issue. Furthermore, its output Q-range (a

linear combination of four distances) needs special localization

algorithm. The RIPS is extended in [6], [7] to track mobile

nodes, where Doppler shifts are further explored and velocity

estimates of moving targets are achieved. Moreover, spinning

beacons are employed in [8] to produce specified Doppler

signals, and then angle-of-arrivals (AOAs) are estimated as

localization metrics. A received signal strength (RSS) based

ranging method is proposed in [9], which takes multipath

parameters into the RSS model. By measuring the RSS of

different spectrum channels, it collects enough data to esti-

mate all the unknown multipath parameters. All the above

examples show the efforts to improve localization accuracy

using narrowband signals.

In this paper, we propose an asynchronous radio interfer-

ometric positioning system (ARIPS) using dual-tone signals.

Two anchors (nodes with known positions) transmit dual-tone

signals, whose frequencies are slightly different from each

other. At the target receiver, two low-frequency differential

signals are created by a simple square-law device and a low-

pass filter (LPF). The phases of these signals contain delay

information between the two transmitters and the receiver.

By extracting the phase difference, we can recover the time-

difference-of-arrival (TDOA). Repeating this ranging proce-

dure, we obtain several TDOAs of different anchor-target pairs.

Conventional TDOA-based localization algorithms [10], [11]

can be applied directly. Our proposed method has several

advantages: i) carrier frequency offsets and random phases due

to asynchronous oscillators are accommodated; ii) increasing

the resolving range limit due to the integer ambiguity issue;

and iii) the TDOA estimate result is much easier to use

compared to the Q-range obtained by the RIPS [5].

The rest of the paper is organized as follows. In Section II,

system model is introduced. The ARIPS using dual-tone

ranging method is proposed in Section III. We consider the

cases with and without accurate knowledge of the differential

frequency, respectively. The simulation results are shown in

Section IV. We draw the conclusions at the end of this paper.

II. SYSTEM MODEL

Let us consider a single target scenario where two anchor

nodes transmit dual-tone signals, and a target node receives

978-1-4673-5939-9/13/$31.00 ©2013 IEEE978-1-4673-5939-9/13/$31.00 ©2013 IEEE

2013 IEEE Wireless Communications and Networking Conference (WCNC): NETWORKS2013 IEEE Wireless Communications and Networking Conference (WCNC): NETWORKS

2294



Fig. 1. The dual-tone ranging method

these signals via different delays as shown in Fig. 1. This

can be easily extended to multi-target scenarios, where sev-

eral target nodes receive the broadcast dual-tone signals by

anchors. Without loss of generality, we model the dual-tone

signals transmitted by Node 1 and Node 2 respectively as

s1(t) = a1cos(2πfct+ φ1)

+b1cos(2π(fc + fd)t+ φ1), (1)

s2(t) = a2cos(2π(fc + fo)t+ φ2)

+b2cos(2π(fc + fd + 2fo)t+ φ2), (2)

where fc is the carrier frequency, fd is the frequency difference

between the first and the second tones of Node 1, fo is the

differential frequency and can be viewed as an intentional

frequency offset as well, φ1 (or φ2) denotes the randomness

of the oscillator of Node 1 (or Node 2), and a1 and b1 (or a2
and b2) are the amplitudes of the transmitted tones of Node

1 (or Node 2). Since each dual-tone signal is generated by

a single node, the phase offset is the same for both tones.

We remark that the carrier frequencies of Node 1 and Node

2 may be different due to asynchronous oscillators. We will

address the effect of the carrier frequency offset (CFO) later.

The asynchronization in the ARIPS refers to the effects caused

by the CFO and random phases.

Through additive white Gaussian noise (AWGN) channels,

the received signal at the target node can be modeled as

r(t) = s1(t− τ1) + s2(t− τ2) + n(t), (3)

where τ1 and τ2 are the transmission delays from Node 1 and

Node 2 to the target node, respectively, and n(t) represents the

AWGN. The delays are in the linear relation to the distances

as di = cτi, i = 1, 2, where c is the signal propagation speed

(Here c = 3 × 108 m/s the speed of light) and di is the

distance between the ith node and the target node. Note that

time synchronization is assumed here.

III. THE ARIPS USING DUAL-TONE RANGING METHOD

A. With accurate knowledge of fo

In order to obtain low-frequency differential signals, we

let r(t) go through a square-law device. Hence, r2(t) can be

written as

r2(t) = s21(t− τ1) + s22(t− τ2) (4)

+2s1(t− τ1)s2(t− τ2) +m(t),

where m(t) = n2(t) + 2n(t)(s1(t − τ1) + s2(t − τ2)), and

s21(t − τ1) = (a21 + b21)/2 + v(t) with v(t) including 8
frequency components of ±2fc,±(2fc+2fd),±(2fc+fd), and

±fd. Moreover, s22(t − τ2) contains the DC and 8 frequency

components of ±(2fc + 2fo),±(2fc + 2fd + 4fo),±(2fc +
fd + 3fo), and ±(fd + fo). Now let us investigate the cross

term s1(t− τ1)s2(t− τ2). Defining τ12 = τ1− τ2, θ0 = fcτ12,

θ1 = −foτ2 and θ = fdτ12 − foτ2, we write the cross term

2s1(t− τ1)s2(t− τ2) as

2s1(t− τ1)s2(t− τ2) (5)

= a1a2cos(2π(fot+ θ0 + θ1) + φ1 − φ2)

+b1b2cos(2π(2fot+ θ0 + θ1 + θ) + φ1 − φ2) + u(t),

where u(t) contains in total 12 frequency components of

±(2fc + fo),±(2fc + fd + 2fo),±(2fc + fd + fo),±(2fc +
2fd + 2fo),±(fd + 2fo), and ±(fd − fo). Furthermore, we

assume fc ≫ fd and fd ≫ 3fo. Therefore, r2(t) includes

4 low-frequency and other moderate- and high-frequency

components as well. If we employ an LPF to get rid of all

the frequency components beyond 2fo, we achieve 4 low-

frequency components, whose phases bear the delay informa-

tion. Excluding the DC component, we model the output of

the LPF as

r̃(t) = a1a2cos(2π(fot+ θ0 + θ1) + φ1 − φ2) (6)

+b1b2cos(2π(2fot+ θ0 + θ1 + θ) + φ1 − φ2) + m̃(t),

where m̃(t) indicates the aggregate noise term, which includes

the noise and the residuals of moderate- and high-frequency

components through the LPF. Note that r2(t) includes in

total 32 frequency components, but only 4 low-frequency

components included in r̃(t) are used to extract the delay

information.

Let us sample r̃(t) by a sampling rate 1/Ts which is no

less than the Nyquist sampling rate (1/Ts ≥ 4fo), and collect

all N samples into a vector r̃. Thus, r̃ can be modeled as

r̃ = HN (fo)x+ m̃, (7)

where m̃ is the sample vector of m̃(t), and

x = [α, β, α∗, β∗]T with α = a1a2e
j2π(θ0+θ1)+j(φ1−φ2),

β = b1b2e
j2π(θ0+θ1+θ)+j(φ1−φ2), and α∗ (or β∗) is the

complex conjugate of α (or β). Furthermore,

HN (fo) = [hN (fo) hN (2fo) hN (−fo) hN (−2fo)]
with hN (f) = [1, ej2πfTs , ej2π2fTs , . . . , ej2π(N−1)fTs ]T .

Assuming the accurate knowledge of fo, we can estimate x

by a least-squares (LS) estimator as

x̂ = H
†
N (fo)r̃. (8)

Note that by extracting the phase information of x̂, we can

only estimate θ̃ instead of θ, where θ̃ = θ − k with k =
⌊θ⌋. This is the well-known integer ambiguity issue due to the
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unknown integer k [12]. We will discuss it later. An estimator

of θ̃ is given by

ˆ̃
θ =

1

2π
arg([x̂]2[x̂]3 + [x̂]∗1[x̂]

∗
4). (9)

Now let us extract the delay information from the phase

estimate. We decompose θ as

θ = fdτ12 − foτ2

= (fd + fo/2)τ12 − (fo/2)η12, (10)

where τ12 denoting the TDOA, and η12 = τ1+τ2 representing

the summation of the delays. Recalling that fd ≫ 3fo, we

arrive at {
θ ≈ (fd + fo/2)τ12, τ1 6= τ2
θ = −foτ2 τ1 = τ2

. (11)

When τ1 6= τ2, θ is approximately in a linear relation to τ12
and −(fo/2)η12 is the approximation error. Thus, we obtain

an estimate of τ12 as

τ̂12 = (
ˆ̃
θ + k)/(fd + fo/2), (12)

where the unknown k counts for the integer ambiguity. When

τ1 = τ2, we achieve τ̂12 ≈ 0 with the condition of fd ≫ 3fo.

Therefore, τ̂12 (12) can be used as a general estimator of τ12.

The following remarks are in order.

Remark 1: The unknown phase offsets φ1 and φ2 do not

have any impact on the TDOA estimation, as they are elim-

inated elegantly in our estimation method. Therefore, the

proposed ARIPS is robust to random phase offsets.

Remark 2: The unknown θ0 as the product of the basis

frequency fc and the TDOA τ12 is canceled as well. The only

requirement to design fc is that fc ≫ fd. We can choose fc
for easy implementation.

Remark 3: The TDOA is a more favorable metric as the

input of localization algorithms than the Q-range of the RIPS.

Several TDOAs can be estimated in the same way between

different anchor-target pairs. Thus, various localization algo-

rithms based on TDOAs [10], [11] can be directly applied.

Remark 4: We only use dual-tone instead of multi-tone

signals, as the number of nuisance frequency components

increases quadratically with the number of tones. The benefit

of using multi-tone signals to obtain extra information is not

worthwhile for the loss of the transmission efficiency.

Remark 5: When |θ| < 1/2, we achieve θ̃ = θ and k = 0.

The estimate of τ12 is simplified as

τ̂12 =
ˆ̃
θ/(fd + fo/2), (13)

where is no integer ambiguity issue. Hence, we are able to

resolve |τ12| in the range of [0, 1/(2fd + fo)] without integer

ambiguity. Therefore, we can design fd and fo according to

the range of interest. For example, the distances of interest

are limited to a few hundreds meters or less than 1 km.

Thus, |cτ12| ≤ 1 km and 0 ≤ cη12 ≤ 2 km. In order

to avoid the integer ambiguity, we should choose fd to be

smaller than 150 KHz. Since fd ≫ 3fo (50 KHz ≫ fo)

and 1 ≫ foη12 (150 KHz ≫ fo), we can design fo < 1

KHz. These conditions are not difficult to fulfill. As a result,

the approximation error of the phase model (11) is smaller

than 0.0033. The freedom to design fd and fo increases the

resolving range limit of the proposed ARIPS. Note that in the

ARIPS, we are able to design three parameters fc, fd and fo
to determine the transmitted dual-tone signals. The ARIPS is

more flexible in dealing with the integer ambiguity compared

to the RIPS, where θRIPS ≈ Qrang(f1+f2)/2c mod 1, with

f1 and f2 transmitted frequencies by Node 1 and Node 2,

respectively. Thus, the RIPS can resolve the |Qrang| in the

range of [0, c/(f1 + f2)]. If we still assume the distances are

less than 1 km, the frequencies of transmitted signals (f1 and

f2) in the RIPS cannot be larger than 75 KHz in order to avoid

the integer ambiguity issue.

Remark 6: The disadvantage for both the ARIPS and the

RIPS is that they are not robust to multipath channels. The

phase information will be contaminated by the unknown multi-

path channel. One possible approach to solve this problem is to

repeatedly measure the same TDOA using different dual-tone

signals [6], [9]. We model each multipath component using an

amplitude and a delay, and bound the number of multipaths.

By collecting enough measurements, we can estimate all the

unknown parameters. This is similar to recover the channel

impulse response in the frequency domain [13].

B. Without accurate knowledge of fo

According to (7), we inverse HN (fo) with the accurate

knowledge of fo and obtain the estimate of x as (8). However,

we may not have the accurate knowledge of fo due to various

reasons, such as low-cost oscillators and unreliable sensor

nodes. Furthermore, the CFO between transmitters could be

one of the reasons as well. The actual fo would be the sum

of the nominated fo and the unknown CFO. Therefore, we

have to estimate fo to construct HN (fo) accordingly, and then

estimate x.

For simplicity, we ignore the noise term from now on. The

sample vector r̃ is rearranged into a matrix R of size p × q
with q = N − p+ 1 as

R =
[
[r̃]1:p [r̃]2:p+1 [r̃]3:p+2 . . . , [r̃]N−p+1:N

]
, (14)

where [a]m:n represents the vector composed of the mth to the

nth elements of the vector a. Consequently, R can be modeled

as

R = Hp(fo)




αhT
q (fo)

βhT
q (2fo)

α∗
h
T
q (−fo)

β∗
h
T
q (−2fo)


 . (15)

The estimation of fo is equivalent to the conventional spec-

tral estimation. Several super-resolution techniques, such as

MUSIC and ESPRIT [14], can be employed. As the ES-

PRIT algorithm yields an elegant closed-form solution, we

employ it here. Note that the data model (15) has the shift-

invariant property [14]. We obtain R1 = [Ip−1 0p−1]R and

R2 = [0p−1 Ip−1]R. It has been proved that the eigenvalues

of Φ = R
†
1R2 are given by ej2πfoTs , ej2π2foTs , e−j2πfoTs

2296



and e−j2π2foTs . Let us define the four eigenvalues of Φ as

λ1, . . . , λ4. Since 1/Ts > 4fo, the estimate of fo is given by

f̂o =
1

2πTs

arg(λ2λ3 + (λ1λ4)
∗). (16)

Once we achieve the estimate of fo, it can be used in (8) to

further extract the phase information.

IV. SIMULATION RESULTS

The performance of the proposed ARIPS is evaluated by

simulations. We consider two cases with and without accurate

knowledge of fo, respectively. In order to avoid the integer

ambiguity issue, we assume 100m < di < 1km and follow

the discussion in Section III-A to design fc, fd and fo. For

example, fc = 10 MHz, fd = 150 KHz, and fo = 120
Hz. The modeling error −(fo/2)η12 is smaller than 0.0004,

which corresponds to a TDOA estimation error of 2.67 ns. It

indicates the TDOA estimate will have an error floor no less

than a few nanoseconds. Moreover, τ1 and τ2 ( or φ1 and φ2)

are randomly generated in each Monte Carlo run following a

uniform distribution in the range of [100, 1000]/3 × 108 (or

[0, 1]). The signal length is 100 millisecond (ms). Assuming

a1 = b1, a2 = b2 and a21d
2
1 = a22d

2
2 according to the

path loss model, we define the signal-to-noise ratio (SNR)

as (a21 + a22)/2σ
2. This is equivalent to transmitting the dual-

tone signals with the same amplitudes at two nodes, and the

attenuated AWGN channels weaken the signals according to

the path loss model.

Fig. 2 (or Fig. 3) shows the root mean square error

(RMSE) of the estimated TDOA (or f̂o) vs. SNR, where

the RMSE is defined as

√
1/Nexp

∑Nexp

n=1 ‖τ̂12(n)− τ12(n)‖2,

with Nexp = 100 the number of Monte Carlo runs, and τ̂12(n)
and τ12(n) the estimate and the true value of τ12 at the nth

run, respectively. The performance of the TDOA estimate with

the accurate fo (the solid line) is about 3 dB better than the

one with the estimated fo (the solid line with circle markers)

at high and moderate SNR. Both of them can achieve a

few nanoseconds accuracy corresponding to distance errors of

tens of centimeters at high SNR. The performance difference

between the TDOA estimator with accurate fo and the one

without increases as the SNR decreases, but it increases slowly

when the RMSE of f̂o is smaller than 1 Hz. Furthermore, as

shown in Fig. 3, the RMSE of f̂o is smaller than 1 Hz when

SNR > −2.5 dB, and can reach a few 10−3 Hz at high SNR.

The proposed ARIPS is not so sensitive to the estimation error

of f̂o according to Fig. 2 and Fig. 3.

Fig. 4 denotes the localization performance of the ARIPS

with SNR = 20 dB, where the SNR is defined as before. The

“2” markers indicate five anchors, which are at the corners

of a 100m × 100m square and the origin of the square,

respectively. The “◦” markers illustrate the true positions of

the targets, which are randomly generated. We employ the LS

estimator discussed in [10] to estimate target positions, and use

the anchor at the origin as the reference node. The estimated

positions with the accurate fo and the estimated fo (f̂o) are

denoted by the “+” and “×” markers, respectively. Both of
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them obtain good estimates. The estimator using the accurate

fo achieves slightly better performance than the one using the

estimated fo. We also evaluate the RMSE of the localization

performance of the ARIPS vs. SNR in Fig. 5. The localization

performance degradation with estimated fo (the solid line with

circle markers) is increasing compared to the one with accurate

fo (the solid line) as the SNR decreases. This is consistent with

the results of the TDOA estimates.

V. CONCLUSIONS

We develop an asynchronous radio interferometric position-

ing system (ARIPS) using dual-tone signals. The ARIPS is

robust to the CFO and random phases due to asynchronous

oscillators. In ARIPS, two dual-tone signals with slightly dif-

ferent frequencies are transmitted by two nodes. The receiver

node creates two low-frequency differential signals using a

square-law device and an LPF. The phase difference of these

two differential signals is extracted. It is approximately in

a linear relation with the TDOA. Furthermore, we consider

the case that we do not have the accurate knowledge of the

frequency of the differential signal. We employ the ESPRIT

algorithm to estimate the frequency, and then use the estimated

frequency to extract the TDOA information. The obtained

TDOAs can be used immediately in conventional TDOA-

based localization algorithms. Simulation results confirm the

efficiency of the proposed ARIPS. It can achieve centimeter

ranging accuracy.

REFERENCES

[1] N. Patwari, J. N. Ash, S. Kyperountas, A. O. III Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 54–69,
Jul. 2005.

[2] G. Mao, B. Fidan, and B. Anderson, “Wireless sensor network
localization techniques,” Computer Networks, vol. 51, no. 10, pp. 2529
– 2553, 2007.

[3] IEEE Working Group 802.15.4, “Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (LR-WPANs),” Dec. 2006.

[4] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V.
Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look
at positioning aspects for future sensor networks,” IEEE Signal Process.

Mag., vol. 22, pp. 70–84, Jul. 2005.
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