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Abstract—Mobile electrocardiogram (ECG) monitoring sys-
tems have sprung up owing to the considerable interest at-
tracted to wireless body area networks (WBAN). The long-
term acquisition process for ECG produces large amount of
data, which puts forward high demand on sensor lifetime.
Fortunately, compressive sensing (CS) theory has been proved
useful in energy saving by compressing signal in certain degree
and fulfilling transmission. However, the reconstruction error
will increase with fixed compression ratio since users or the
sparsity of ECG signal will change during monitoring process.
This paper concerns the flexibility and reconstruction quality
problem existed in traditional CS-based ECG signal processing.
One adaptive ECG compression scheme inspired by closed-loop
control theory is proposed, in which the compression ratio can
be adjusted according to both real-time reconstruction error
and prior knowledge support. Simulation results show that the
proposed scheme can improve the compression performance of
10.83% compared with traditional CS-based methods.

I. INTRODUCTION

Cardiovascular disease takes leading position in threatening
human life, it claims responsible for a third of deaths world
wide, especially the elderly. According to the national working
committee office on aging, China’s aging population surpassed
202.43 million by the end of 2013, accounting for 14.9% of
the total population. With aging trend in our country becoming
more serious, more eyes will undoubtedly be focused to
ECG signal. Long term cardiac monitoring process inevitably
brought about huge time cost, the mobile healthcare system
emerges due to phenomenal growth of WBAN. During mobile
ECG monitoring, the ECG can be detected by wearable nodes
and transmitted to mobile phone along with remote healthcare
center. In this case, doctors can observe persistent information
and give diagnosis remotely.

However, high sampling frequency and long-term transmit-
ting process obviously produce large amount of data, which
brings energy saving challenge for WBAN. One practical
system introduced in [1] indicated that wireless transmission in
mobile ECG monitoring process costs half of overall energy
consumption. Therefore, it is imperative to do compression
work before transmitting collected data. Owing to low frequen-
cy and sparse properties of ECG signal, CS-based technique
can be used to fulfill ECG signal compression and reconstruc-
tion. CS-based methods [2] compress ECG signal to a fewer
dimension and transmitted it to the mobile terminal. After

wireless transmission, the ECG signal can then be recovered
via convex optimization.

There are many researchers focusing on reducing the recon-
struction error, such as [3] — [8]. On the one hand, methods
in [3] and [4] concentrated on the node side by giving out
two modified sparse matrices, which preserved the signal
energy and got ready for reconstruction process. [5] and [6],
on the other hand, exploited powerful computing performance
of the mobile terminal and carried out the bayesian sparse
block learning (BSBL) method, which significantly improved
reconstruction performance. Works in [7], [8] outperformed
previous BSBL method through introducing statistical support
at the node side, which made more advantage of the ECG
signal.

It is worth noting that all methods described above needed
training process to find one fixed compression ratio (CR),
reconstruction error will increase if the ECG sparsity expe-
riences severe vibration. What’s worse, because the charac-
teristics of ECG signal vary among different users, training
process for above methods will inevitably bring a lot of
trouble. To solve this issue, an adaptive ECG compression
scheme based on compressive sensing is proposed in our paper.
In our proposed scheme, the CR parameter is set adjustable
according to feedback of real reconstruction error. In this case,
the flexibility problem caused by training process will also be
solved.

Some error-based adjusting algorithms were proposed in
[9] — [11], both linear and nonlinear adjusting methods were
introduced. For filter adjusting process, least mean square
error algorithms with variable step size (VLMS) was used
in [9], [10] to adjust the filter parameter. Unlike this rapid
adjusting process, linear formula was exploited in [11] for
weather monitoring since the temperature changed once an
hour.

Obviously, in an adaptive system, the compatibility between
adjusting method and controlled object must be fully con-
sidered. As a result, nonlinear adjusting method is used in
our system and Directional-VLMS method based on VLMS
algorithm is presented.

Besides, due to the positive relationship between the sparsity
change and CR change, prior knowledge mined from ECG
database will be added as an offline module for sparse predic-
tion. This action brings no extra burden, it will improve the
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performance significantly instead.
Specifically, the main contributions of this paper can be
summarized as follows.

o Real-time reconstruction error is generated via introduc-
tion of the beacon signal. Compared with previous CS-
based ECG signal processing, this move can make recon-
struction error applicable for online evaluation without
knowing the original ECG signal.

e An adaptive ECG compression scheme based on com-
pressive sensing is presented, it enhances the reconstruc-
tion performance compared with traditional CS-based
methods.

o Prior knowledge is added as one offline database for
sparse prediction, which ensures better reconstruction
performance.

The remainder of this paper is arranged as follows. In
Section II, we briefly review CS theory and the VLMS
algorithm. Then, in Section III, three major parts of our
proposed adaptive ECG compression scheme are described.
The evaluation indicators and simulation results are given in
Section IV. Finally, we draw our conclusion in Section V.

II. BACKGROUND RESEARCH

A. Compressed sensing

For example, we have the original signal = as n x 1 vector,
« has sparse representation in DWT basis (U;);, € R", as
expressed in (1):

i=1 i=1

where 6 € n x 1 is sparse feature vector of z in ¥ basis and
have s non-zero coefficients satisfying s < n.

If we acquire m measurements via sensing matrix ® € m x
n from original signal z, represented as formula in (2):

y= bz =0V =00 2)

where y is sampled vector and m satisfies s < m < n, © =
P is defined as measurement matrix. ¢ is defined as random
matrices of Gaussian distribution.

We can recover & from m = cslogN measurements ac-
cording to £ = W@ by solving convex optimization problem
in (3):

min || 0 |jo s.t.y= U0 3)

where ® and ¥ obey the restricted isometry property, and
c is the over-sampling factor. Greedy algorithms for signal
reconstruction such as orthogonal matching pursuit (OMP) is
good choice in combining speed with complexity.

B. Variable step size LMS algorithm

The VLMS algorithm was mainly applied in filter parameter
adjustment process. It can be expressed as follows:

E(k) = d(k) — X" (k)W (k) Q)

Wk +1) = W(k) + 2u(k) E(k) X (k) (5)

where W (k) in (4) is the weighted vector of adaptive filter at
time k, X (k) is the input signal vector and d(k) is the desired
output, E(k) represents temporal error and u(k) is the step
length factor. Here, pu(k) satisfies 0 < g < 1/Amax> Amax 18
the largest eigenvalue in auto-correlation matrix of the input
signal.

One VLMS-based regulating mode is widely used to achieve
fast convergence effect in accordance with the precision stan-
dard. One variable step size strategy can be expressed as the
following formula:

(k) = B(1 — exp(—a | E(k) [*)) (6)

where « controls the function shape and (5 controls the scope,
they satisfy o > 0, 5 > 0.

III. PROPOSED SCHEME
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Fig. 1: CS-based Adaptive ECG Compression Scheme.

The CS-based adaptive ECG compression we propose is
marked in Fig.1, which contains the sensor node and the
mobile terminal. Traditional CS-based ECG sinal processing
is illustrated in upper part of the Fig.l, raw ECG data z
can be compressed to y after sparse map at the sensor node.
After transmission process, compressed data is recovered at
the mobile terminal via OMP reconstruction. According to
auto-control theory, we set compressed dimension m dynamic
and create a control system by adding three functional parts:
PE, D-VLMS control and prior supported sparse prediction to
traditional CS-based ECG processing methods.

A. PE: percentage root-mean-square difference (PRD) estima-
tion

In control system, the controller makes sense by comparing
output of controlled object with the reference value and then
uses their D-value to drive actuator. Inspired by this idea, we
draw evaluation of real-time monitoring quality by compar-
ing real-time reconstruction error with observing demand in
standard. The indicator PRD is used to measure difference



between the original and reconstructed signal. However, real-
time PRD can’t be generated since original ECG signal value is
unknown in monitoring process, existing research just utilizes
this indicator for offline evaluation. For evaluating temporary
monitoring quality, we randomly choose a tiny part from
original signal as beacon signal in each frame and record
their position information along with value. Compressed signal
is transmitted to the mobile terminal together with beacon
information, then real-time PRD can be calculated via formula
expressed in (7):

PRD;, = x 100% @)

where z; is the beacon signal, Z; is reconstructed signal which
lists in the same position as beacon signal, [ is length of beacon
signal, here we choose [ = 15.

This action is effective because when n is not too big,
PRD; is similar to global PRD. Proofs of our estimation
and determination of length [ are given in the next section.

Through this method, we can obtain real-time PRD, which
will be used to calculate the reference error in comparison with
reconstructing demand in standard. As given in [13], if PRDj,
reaches 9% or below at time k, current C Ry or compressed
dimension m can be considered as qualified to achieve good
reconstruction performance, so we treat e(k) = PRDy, — 9%
as controller to drive adjusting operation of dimension m.

B. D-VLMS control

After determining real-time e(k) at time k, we need ad-
justing method as actuator for better ECG reconstruction. As
given in Section II, the VLMS algorithm has been proved
useful in calculating optimal step length as per time-variant
error value e(k). However, the VLMS algorithm can’t be
exploited directly here since step direction is uncertain without
considering the symbol of e(k). Similar to previous works,
compressed dimension m has a relatively negative relationship
with reconstruction error e(k). That is to say, m can be in-
creased in order to enhance observing quality if e(k) > 0, and
it can be decreased for saving wireless transmission in return.
As a result, we create sign(e(k)) as a threshold function here
for tagging direction of adjustment, it is expressed in (8):

sign (e(k)) = { SR ®)

By adding directional guide to the VLMS algorithm, D-
VLMS control can be achieved. To be specific, during the
D-VLMS adjusting process, directional broad step length is
used when reconstruction error is great and small step size
is used when the error gets smaller, the formula for step size
11 (k) can be seen in (9):

wq (k) = round(B(1 —exp(—a | e(k) |2))) x sign(e(k)) (9)

After determining uq (k) for current e(k), it can be used to
change compression parameter m at time k + 1, as described
in (10). The parameter L7, is introduced to avoid overshoot
problem, which exists when wuq(k) is huge and m(k) is
undergoing severe shock. Besides that, m(k) is set as stable
if ui(k) < Lrm,, thus achieving the effect of convergence.

m(k) + LTH1
m(k)
m(k) + u1 (k)

if ul(k) > LTH1
if ul(k:) < LTHQ
else

m(k+1) = (10)

The value of time period k is 1,2,3,--- and k satisfies
k > 1, m(k) represents the row value of sensing matrix
®, we should initialize m(1) for the first compression and
transmitting process.

C. Prior-supported sparse prediction
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Fig. 2: Sparsity change versus compression adjustment in
accurate reconstruction.

Due to time-lag effect, closed-loop control may not fully
undertake adjusting task since signal has diversity in each
frame, along with sparse change. Therefore, we add prior
supported sparse prediction as feed-forward loop and make
compensation for D-VLMS control described above.

Since the sparsity s of signal varies for each time period,
huge shock of s will result in bad reconstruction effect.
Feedback control may not reach the requirements of accurate
reconstruction, we attempt to add additional regulation mode
according to signal diversity. We select 409600 data from MIT-
BIH Arrhythmia database, then complete CS-based process
in simulation on condition that the reconstruction error is
within acceptable level (less than 9%), we get two 3193 x 1
dimensional vectors representing ECG sparsity s(1: 3193)
versus compressed dimension m(1: 3193) from time 1 to
k + 1. After calculation of first order difference, which can
be expressed as follows:

As(k+1)=s(k+1)—s(k) (11)

Am(k+1)=m(k+ 1) —m(k) (12)



we can generate two 3192 x 1 dimensional vectors represent-

ing sparse change As(k + 1) versus dimensional change for
compression Am(k+ 1) in adjacent time periods as shown in
Fig.2.

Obviously, positive relationship can be found between verti-
cal and horizontal axis, we then construct a model to calculate
corresponding compression adjustment after measuring the
change of ECG sparsity. In order to prevent over fitting, the
least square fitting of first order is adopted and then one linear
model is concluded to characterize these two variables in (13):

to(k + 1) = round(K x As(k + 1)) (13)
where K refers to the slope of linear mapping function.
As(k + 1) is the sparse change of ECG signal, it can be
calculated by subtracting sparsity in adjacent time periods
from k to k + 1. As a result, uy(k + 1) is the feed-forward
prediction for compression adjustment.

By adding this sparse prediction to feedback-control result
of last time k, we can obtain gross compression m(k + 1) for
time k + 1, thus ensuring comprehensive optimization effect.

IV. SIMULATION RESULTS

In this section, evaluation indicators for mobile ECG moni-
toring system and simulation results are provided to illustrate
the effectiveness of the proposed scheme. The database is ex-
tracted from the recognized MIT - BIH Arrhythmia database. It
has 48 ambulatory ECG recordings with sampling frequency of
360 Hz. We take 12800 data in total from group 108 as testing
data, complete compression and reconstruction process from
time step 1 to 100 with frame length n = 128. And also, we
do the same experiment for 50 times and calculate the average
value of experimental results.

A. Evaluation indicators

Generally, there are two evaluation indicators for mobile
ECG monitoring: the compression ratio (CR) and PRD. CR
is the ratio of bits number for original signal and compressed
sequence in each frame, it can be expressed by the following
formula in (14) and (15) :

By
CR=—N 14
BM + Bbeacon ( )
prD = 12 =illa 509 (15)
il

where By and Bpeqcon represent the bit number of original
signal and beacon information, Bj; represents the bit number
of compressed signal and n stands for total length in each
frame.

B. Error estimation performance

As introduced in Section III, we randomly choose a tiny
part from original signal in length [ and record their position
information and value. After reconstruction process at the
mobile terminal, PRD; can be calculated as replacement for
PRD, which marks the monitoring quality. For determining
length [ of the beacon signal, we initialize one small value of
[, then iteratively increase it until (16) can be satisfied.
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Fig. 3: Relativity between PRD and PRD;. .

Rl \/(PRD—PRD1)2 (16)

PRD?

where € is the relativity threshold and R stands for the
relativity of PRD and PRD;. We select first 128 data
from record 108 as an example and iteratively complete R
calculation with increasing [. As shown in Fig.3, R will soon
become stable after first few big steps, if we take 95% as the
standard for similarity, then only 15-20 beacon signals will be
sampled for error extraction.

Through this method we can obtain real-time PRD, which
will act as one reference for compression adjustment in part
of our proposed strategy.
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Fig. 4: PRD value for 3 control methods.
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Fig. 5: Bar chart for prior-based and mixed adjustment.

TABLE I: Results of CR value

Dataset  CR in Our scheme CR in Traditional CS
101 4.02 3.56
102 3.85 342
103 4.14 3.78
104 3.98 3.52
105 3.72 3.32
106 4.20 3.73
107 4.08 3.63
108 3.86 343
Avg 3.98 3.55

C. Control performance

In Fig.4, PRD; value is given from time step 1 to 100 in
case of feedback-only control, prior knowledge-only adjust-
ment and our proposed comprehensive scheme respectively. It
is obvious that our method can automatically adjust compres-
sion parameter according to both signal diversity and real-time
reconstruction error, it also guarantees observing quality for
remote health-care center.

It is worth noting that the gap between total compression
adjustment and prior knowledge-based adjustment will soon
vanish in a short period of time. That is to say prior-based
adjustment will play a dominant role after convergence, which
is shown in Fig.5.

Since the CR value is adjusted according to real-time PRD
value, a large initial value for CR is set in the purpose of
transmission saving. We choose additional data set from MIT-
BIH database in testing the proposed scheme, corresponding
CR value from time step 1 to 10 is given in the following table,
which also gives a comparison with CR value of traditional
CS-based methods. It is worth mentioning that when the user
switches, our proposed adaptive ECG compression method
can improve the transmission performance of 10.83% than
traditional CS-based methods.

V. CONCLUSION

This paper proposes a novel scheme for CS-based ECG
compression. Considering the flexibility and reconstruction

quality in body area network, an adaptive ECG compression
scheme is presented by adding three major functional parts to
traditional CS-based methods. Combined with experimental
results, our proposed system is proved to be efficient and
practical.
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