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Abstract

We consider a wireless sensor network (WSN) that employs ultra-wideband im-
pulse radio (UWB-IR) to locate a target. This can be done using the two-way
ranging protocol (TWR). It can be shown that when using TWR, the localiza-
tion problem can be linearized. The range measurements between the sensor
nodes and the anchors are not assumed reliable, however. A way to deal with
the presence of a small number of incorrect measurements is to use a robust
estimator such as the least absolute shrinkage and selection operator (LASSO)
or sparse residuals, instead of a least squares estimator. It is demonstrated that
using a robust estimator can significantly improve the quality of the localization,
provided that the number of incorrect measurements is small.

1 Introduction

Ultra-wideband (UWB) has been emerging as an attractive technology with interesting
applications in wireless communication, localization and radar [3, 7, 12]. Due to its
large bandwidth, UWB impulse radio (UWB-IR) can provide good ranging capabilities
with submeter accuracy. This feature is attractive for providing localization services
to wireless sensor networks (WSNs). Moreover, UWB-IR has already been included in
the IEEE 802.15.4a standard for wireless personal area networks (WPANs) [1], which
makes its widespread adoption a possibility.

In this work we consider a WSN that employs UWB-IR ranging to locate a target.
However, we do not assume that all WSN anchor nodes report reliable range measure-
ments: an adversary can tamper with the software of individual nodes, or exploit the
nature of the wireless medium to alter the measured range, for example by using re-
flectors. Non-line-of-sight (NLOS) propagation could also introduce errors to the range
measurement. Since it is difficult to predict and guard against every possible attack or
problem, it can be more reasonable to attempt to detect and thwart any such attacks
instead.

In some cases, it is reasonable to assume that out of all range measurements, only
a few will be corrupted by one or more attackers. We define these as being outly-
ing measurements, or outliers, in the sense that they are a minority in the set of all
measurements. This opens the possibility of formulating the localization problem in
a way that takes advantage of the expected small number of outliers. The least ab-
solute shrinkage and selection operator (LASSO) is such a formulation and has been
successfully employed in various fields such as genetics [13, 15|, image processing [2],
compressive sampling [4], and error correction [5] to tackle outlier presence. In some of
these problems, e.g. compressive sampling, it is known a priori that the result should
be a sparse vector. In other problems, such as the localization problem we examine
in this work, the result is a dense vector of coordinates that yields residuals that are
sparse. The popularity of the LASSO and its variants stems from the fact that it has



the parsimony property: it promotes solutions containing just a few nonzero elements,
their amount being controlled by a tunable parameter \.

In this paper we begin by examining the two-way ranging protocol (TWR) in Section
2 and deriving linear models for the localization problem using the method presented
in [16], while taking the presence of outliers into account. We then argue in Section
3 that LASSO or sparse residuals can be applied to get a position estimate from the
linear model. In Section 4 we present and discuss simulation results, whereas in Section
5 we give our conclusions.

2 Ranging protocol and system model

In our localization scenario, a target node is located with the help of M anchor nodes

whose locations are known. Each anchor is denoted by a positive integer tag 1,2, ..., M.
The tag 0 is reserved for the target. Let Z = {1,2,..., M} be the set of all anchor tags.
All nodes are dispersed in a p-dimensional space x; = (1, T4, .., Tpi]’, i € Z, where

x; stacks the coordinates of the ¢th anchor. Vector x denotes the unknown coordinates
of the target node. The internal clock of each anchor and the target has the relation
Ci(t)y=t+0;, i € {0,1,..., M} with the real time ¢. The anchors and the target can
exhibit different clock offsets, i.e. 0y # 01 # ... # 6, in general.

2.1 TWR

The two-way ranging (TWR) protocol [1] is a simple way to provide ranging infor-
mation. An anchor node 7 can start the protocol by sending a ranging packet. This
can be any kind of packet that has the ranging bit set. The first UWB pulse of the
first bit of a ranging packet is the ranging marker (RMARKER). The anchor node
records a timestamp t;50 when the RMARKER leaves its antenna. The target receives
the RMARKER at time tgg;, carries out some internal processing and sends back a re-
sponse to anchor ¢ at time tgg;. When anchor ¢ receives the response, it records a second
timestamp t;zo (Fig. 1). A fusion node receives the timestamps t;s0, tori, tosi, tiro
and can calculate an estimate

r; = %c((tiRO — tiso) — (tosi — tori)) (1)

of the roundtrip distance,with ¢ denoting the speed of light.

The collected timestamps may be corrupted by noise and some of them could be
altered by an attacker. Let m; and o; model the amount of fictional distance added due
to the measurement noise and the attack respectively. An anchor misreporting t;sq or
tiro can lead to an o; # 0. Likewise, the target can misreport tgs; or tog;, which again

leads to o; # 0. It holds that
n:dl—i—ml—l—oz, 1€l (2)

where d; = ||x; — x||,.
Moving o; to the other side of (2) and expanding d; yields

Ti—OZ':HXi—XHQ‘i‘mZ'. (3)
Squaring both sides of (3) and separating knowns from unknowns leads to

si:||XH§—2xiTx+ui+m-, 1€l (4)



Figure 1: Schematic representation of the TWR ranging protocol. The circles represent
anchors and the triangle is the target. Solid lines represent transmissions from an
anchor to the target. Dashed lines denote transmissions from the target to the anchors.

where

si=r; = |Ixill;
:

U; = 21;0;, — O

Equivalently, (4) can be rewritten in matrix form as s = Ay + u + n, where y =

2
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(p+1)

A necessary condition to get a unique position estimate is rank(A) = p + 1. Conse-
quently M > p+ 1. For p = 2 it follows that M > 3. Additionally, it can be seen
that a single misbehaving anchor can influence only one element of u. A misbehaving
target, however, can potentially influence any number of elements. When only a few
anchors behave maliciously or the target misbehaves a few times, we can expect the
vector u to be sparse with a few nonzero elements.



3 Cost function and algorithm

The system model derived for the TWR protocol is the linear model
s=Ay+u+n (7)

When the anchors and target behave reliably, u = 0 and a position estimation is
commonly posed as minimizing J(y) = ||s — Ay| |§ This minimization problem admits

the well known least squares (LS) solution y* = Afs, where AT = (ATA)7!AT is the
Moore-Penrose pseudoinverse of A. In the presence of outliers, however, u # 0, and
it is well known that the LS estimator can produce a very poor estimate [14, Ch. 1].
Even a single outlier can severely distort it.

A more robust alternative to the LS estimator is to minimize the cost function

1
J(y,u,A):§||S—AY—UH§+/\HUH1 (8)

J is essentially a sparse residuals formulation of the cost function. The /1 —norm favors
a sparse u and a y that minimizes the /,—norm of the noise vector.

A group coordinate descent algorithm can be used to solve J [10]. Alternatively, it
can be transformed into a more traditional LASSO problem [9]. Very efficient solvers
such as Least Angle Regression (LARS) [6] and GLMNET [8] can be then used.

The LASSO formulation of the problem is given by minimizing J over y and plug-
ging the solution back into J. The cost function then becomes

2
Jr(u,A) = [|[(T— AAN)(s — w)[[, + A[ul],
= ||z — Bul[5 + A|lul|, 9)

where B = I — AA' and z = Bs. The position estimate y* can be calculated as
y* = Af(s — u*), where u* = arg min,, J..

Let (y*,u*) be the solution of ming ) J for A fixed and N, the true number of
outliers. As mentioned earlier, choosing the parameter A controls the sparsity of u*.
Choosing a good value for A is crucial, as a very small value will tend to give many
false positives, whereas a very big value will make u very sparse and outliers might go
undetected. The best value would be the one for which ||u*||o = N,.

A way to deal with this problem is to solve for multiple values of A and to select
a suitable set of solutions based on some prior knowledge, or estimation procedure [9].
For example, assume a grid of L values for A, denoted by A¥ &k = 1,2,..., L. Each

value A*¥ corresponds to a solution set (y*, u*®) k =1,2,... L. Then,
e If N, is known, a solution (y*V!, w*l/l) for which ||u*¥!||; = N, can be chosen.

e If the noise variance o2 is known, a solution (y*[j], u* U]) can be chosen,for which
j = argmin, (|02 — var(s — Ay*lF — w)).

4 Simulation

The performance of our method in estimating the correct position of the target was
tested using the threat model proposed in [11]. The adversary attempts to contaminate
anchors, so that their measurements point at location x,. The true location of the
target, x is at distance d, from x,. The effect on the linear model is that those linear
equations corresponding to contaminated measurements are satisfied by x,. The rest



are satisfied by x. This can be viewed as some equations “voting” for x, as a solution
and the rest “voting” for x.

In the simulated scenarios, 30 anchors are randomly dispersed in a 500 x 500m?
rectangular area. The target is also dispersed randomly in the same area. A fusion
center gathers measurements that are corrupted by Gaussian noise of variance o2,
m; ~ N(0,02). We examine the cases where either 10%, 20% or 40% of the anchors
give wrong measurements. It is randomly determined which of the anchors will send
contaminated measurements.

A linear TWR model is built. A block coordinate descent algorithm [10] is then

used to provide the vectors w** and y**l. The best candidates are chosen using prior
knowledge of the noise variance, as described in Section 3.

The simulation results can be seen in Fig. 2. It can be seen that when the number of
outliers is small, for example 10% or 20%, the root of the mean square error (RMSE) of
the distance of the true location of the target from the estimated location is significantly
better using a simple LS estimation. Since the LS estimation is not robust to outliers,
the error grows as the strength of the attack grows. The robust estimation method
gives comparable results to LS for low attack strengths, since in this case the outliers’
strength is comparable to the noise level and are treated as noise. This is not the
case, however, for high attack strengths, where outliers are succesfully detected by the
robust estimator and we witness a decoupling of the RMSE from the attack strength,
unlike the LS case. It can be seen on Fig. 2(a) that for small contamination rates,
most outliers are successfully detected with a small number of false positives.

The situation is however different for high contamination rates, where many ele-
ments of u are expected to be nonzero. If u is not sparse enough, then the chances
of getting good estimations for u are significantly lower. This can be seen in the 40%
contamination rate case. The RMSE is big, as is the percentage of false positives,
an indication that the quality of the estimation will not be satisfactory when many
outliers are present.

5 Conclusions

In this paper we have provided a linearized form of the localization problem when using
the TWR protocol in UWB-IR WSNs. This linear model takes the presence of outliers
into account and we have established that when only a few ranging measurements are
corrupted by an attack, the vector u that captures the influence of the outliers will be
sparse. The linearity of the problem in combination with the outlier sparsity makes
robust location estimation techniques such as LASSO and sparse residuals feasible.
By using simulations we have shown that when only a few outliers are present, the
RMSE will mostly depend on the measurement noise variance. When lots of outliers
are present, however, this method performs in a less satisfactory manner, since LASSO
and sparse residuals do not correctly identify the outliers when u is not sparse.
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